結果
問題 | No.243 出席番号(2) |
ユーザー |
![]() |
提出日時 | 2021-09-02 19:44:59 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 692 ms / 2,000 ms |
コード長 | 2,913 bytes |
コンパイル時間 | 241 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 45,476 KB |
最終ジャッジ日時 | 2024-11-30 08:38:54 |
合計ジャッジ時間 | 20,007 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
import bisectimport copyimport decimalimport fractionsimport functoolsimport heapqimport itertoolsimport mathimport randomimport sysfrom collections import Counter,deque,defaultdictfrom functools import lru_cache,reducefrom heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_maxdef _heappush_max(heap,item):heap.append(item)heapq._siftdown_max(heap, 0, len(heap)-1)def _heappushpop_max(heap, item):if heap and item < heap[0]:item, heap[0] = heap[0], itemheapq._siftup_max(heap, 0)return itemfrom math import gcd as GCDread=sys.stdin.readreadline=sys.stdin.readlinereadlines=sys.stdin.readlinesdef Extended_Euclid(n,m):stack=[]while m:stack.append((n,m))n,m=m,n%mif n>=0:x,y=1,0else:x,y=-1,0for i in range(len(stack)-1,-1,-1):n,m=stack[i]x,y=y,x-(n//m)*yreturn x,yclass MOD:def __init__(self,p,e=1):self.p=pself.e=eself.mod=self.p**self.edef Pow(self,a,n):a%=self.modif n>=0:return pow(a,n,self.mod)else:assert math.gcd(a,self.mod)==1x=Extended_Euclid(a,self.mod)[0]return pow(x,-n,self.mod)def Build_Fact(self,N):assert N>=0self.factorial=[1]self.cnt=[0]*(N+1)for i in range(1,N+1):ii=iself.cnt[i]=self.cnt[i-1]while ii%self.p==0:ii//=self.pself.cnt[i]+=1self.factorial.append((self.factorial[-1]*ii)%self.mod)self.factorial_inve=[None]*(N+1)self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)for i in range(N-1,-1,-1):ii=i+1while ii%self.p==0:ii//=self.pself.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.moddef Fact(self,N):return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.moddef Fact_Inve(self,N):if self.cnt[N]:return Nonereturn self.factorial_inve[N]def Comb(self,N,K,divisible_count=False):if K<0 or K>N:return 0retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.modcnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]if divisible_count:return retu,cntelse:retu*=pow(self.p,cnt,self.mod)retu%=self.modreturn retuimport numpy as npN=int(readline())A=[int(readline()) for i in range(N)]A=[a for a in A if 0<=a<N]mod=10**9+7C=Counter(A).values()dp=np.zeros(len(C)+1,np.int64)dp[0]=1for c in C:dp[1:]+=c*dp[:-1]dp%=modMD=MOD(mod)MD.Build_Fact(N)ans=0for i in range(len(C)+1):if i%2==0:ans+=dp[i]*MD.Fact(N-i)else:ans-=dp[i]*MD.Fact(N-i)ans%=modprint(ans)