結果

問題 No.1666 累乗数
ユーザー kaikeykaikey
提出日時 2021-09-03 22:04:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,134 ms / 2,000 ms
コード長 4,462 bytes
コンパイル時間 2,760 ms
コンパイル使用メモリ 214,004 KB
実行使用メモリ 16,564 KB
最終ジャッジ日時 2024-05-09 04:07:45
合計ジャッジ時間 24,496 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 89 ms
16,424 KB
testcase_01 AC 1,134 ms
16,556 KB
testcase_02 AC 1,132 ms
16,324 KB
testcase_03 AC 1,131 ms
16,560 KB
testcase_04 AC 1,127 ms
16,428 KB
testcase_05 AC 1,119 ms
16,448 KB
testcase_06 AC 1,115 ms
16,432 KB
testcase_07 AC 1,114 ms
16,432 KB
testcase_08 AC 1,119 ms
16,428 KB
testcase_09 AC 1,129 ms
16,432 KB
testcase_10 AC 1,126 ms
16,560 KB
testcase_11 AC 1,125 ms
16,432 KB
testcase_12 AC 1,126 ms
16,560 KB
testcase_13 AC 1,128 ms
16,560 KB
testcase_14 AC 1,122 ms
16,560 KB
testcase_15 AC 1,121 ms
16,560 KB
testcase_16 AC 1,127 ms
16,564 KB
testcase_17 AC 1,121 ms
16,432 KB
testcase_18 AC 1,116 ms
16,556 KB
testcase_19 AC 1,118 ms
16,428 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
#include <random>
#include <chrono>
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef long double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld;
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto mul = [](T a, T b) -> T { return a * b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
	for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
	return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
	for (T& in : v) is >> in;
	return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
template <class T>
T div_floor(T a, T b) {
	if (b < 0) a *= -1, b *= -1;
	return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
	if (b < 0) a *= -1, b *= -1;
	return a > 0 ? (a - 1) / b + 1 : a / b;
}
template <class F> struct rec {
	F f;
	rec(F&& f_) : f(std::forward<F>(f_)) {}
	template <class... Args> auto operator()(Args &&... args) const {
		return f(*this, std::forward<Args>(args)...);
	}
};
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }
lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); }
bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => true
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 2e9;
lint dx[8] = { 0, -1, 0, 1, 1, -1, 1, -1 }, dy[8] = { -1, 0, 1, 0, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; }
struct Edge {
	lint from, to;
	ld cost;
	Edge() {

	}
	Edge(lint u, lint v, ld c) {
		cost = c;
		from = u;
		to = v;
	}
	bool operator<(const Edge& e) const {
		return cost < e.cost;
	}
};
struct WeightedEdge {
	lint to;
	lint cost;
	WeightedEdge(lint v, lint c = 1) {
		to = v;
		cost = c;
	}
	bool operator<(const WeightedEdge& e) const {
		return cost < e.cost;
	}
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<lint, plint> tlint;
typedef pair<tlint, plint> qlint;
typedef pair<string, lint> valstr;

int main() {
	lint T;
	cin >> T;
	set<lint> sq;
	FOR(v, 2, 1e5) {
		lint curr = v;
		FOR(k, 2, 33) {
			if (check_overflow(curr, v, 1e18 + 1)) break;
			curr *= v;
			sq.insert(curr);
		}
	}
	Vl _sq;
	for (lint _v : sq) _sq.push_back(_v);
	auto get = [&](lint _k) {
		return _k - (upper_bound(ALL(_sq), _k) - _sq.begin()) - 1;
	};
	while (T--) {
		lint K;
		cin >> K;
		auto check = [&](lint val) {
			lint sum = 1;
			FOR(k, 2, 64) {
				lint ng = 1, ok = 1e9 + 1;
				auto _check = [&](lint _val) {
					lint curr = 1;
					REP(_, k) {
						if (check_overflow(curr, _val, val)) return true;
						curr *= _val;
					}
					return curr > val;
				};
				while (ok - ng > 1) {
					lint mid = (ok + ng) / 2;
					if (_check(mid)) ok = mid;
					else ng = mid;
				}
				sum += get(ng);
			}
			return sum >= K;
		};
		
		lint ng = 0, ok = 1e18 + 1;
		while (ok - ng > 1) {
			lint mid = (ok + ng) / 2;
			if (check(mid)) ok = mid;
			else ng = mid;
		}
		cout << ok << endl;
	}
}
0