結果

問題 No.1666 累乗数
ユーザー iiljj
提出日時 2021-09-03 23:10:57
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,022 ms / 2,000 ms
コード長 17,171 bytes
コンパイル時間 1,795 ms
コンパイル使用メモリ 139,868 KB
最終ジャッジ日時 2025-01-24 07:00:44
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 19
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/* #region Head */
// #include <bits/stdc++.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert> // assert.h
#include <cmath> // math.h
#include <cstring>
#include <ctime>
#include <deque>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vc<vc<T>>;
using vll = vc<ll>;
using vvll = vvc<ll>;
using vld = vc<ld>;
using vvld = vvc<ld>;
using vs = vc<string>;
using vvs = vvc<string>;
template <class T, class U> using um = unordered_map<T, U>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>;
template <class T> using us = unordered_set<T>;
#define TREP(T, i, m, n) for (T i = (m), i##_len = (T)(n); i < i##_len; ++(i))
#define TREPM(T, i, m, n) for (T i = (m), i##_max = (T)(n); i <= i##_max; ++(i))
#define TREPR(T, i, m, n) for (T i = (m), i##_min = (T)(n); i >= i##_min; --(i))
#define TREPD(T, i, m, n, d) for (T i = (m), i##_len = (T)(n); i < i##_len; i += (d))
#define TREPMD(T, i, m, n, d) for (T i = (m), i##_max = (T)(n); i <= i##_max; i += (d))
#define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i))
#define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i))
#define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i))
#define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d))
#define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d))
#define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
#define REPIR(itr, ds) for (auto itr = ds.rbegin(); itr != ds.rend(); itr++)
#define ALL(x) begin(x), end(x)
#define SIZE(x) ((ll)(x).size())
#define PERM(c) \
sort(ALL(c)); \
for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c)))
#define UNIQ(v) v.erase(unique(ALL(v)), v.end());
#define CEIL(a, b) (((a) + (b)-1) / (b))
#define endl '\n'
constexpr ll INF = 1'010'000'000'000'000'017LL;
constexpr int IINF = 1'000'000'007LL;
constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7
// constexpr ll MOD = 998244353;
constexpr ld EPS = 1e-12;
constexpr ld PI = 3.14159265358979323846;
template <typename T> istream &operator>>(istream &is, vc<T> &vec) { // vector
for (T &x : vec) is >> x;
return is;
}
template <typename T> ostream &operator<<(ostream &os, const vc<T> &vec) { // vector (for dump)
os << "{";
REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", ");
os << "}";
return os;
}
template <typename T> ostream &operator>>(ostream &os, const vc<T> &vec) { // vector (inline)
REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " ");
return os;
}
template <typename T, size_t _Nm> istream &operator>>(istream &is, array<T, _Nm> &arr) { // array
REP(i, 0, SIZE(arr)) is >> arr[i];
return is;
}
template <typename T, size_t _Nm> ostream &operator<<(ostream &os, const array<T, _Nm> &arr) { // array (for dump)
os << "{";
REP(i, 0, SIZE(arr)) os << arr[i] << (i == i_len - 1 ? "" : ", ");
os << "}";
return os;
}
template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair
is >> pair_var.first >> pair_var.second;
return is;
}
template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &pair_var) { // pair
os << "(" << pair_var.first << ", " << pair_var.second << ")";
return os;
}
// map, um, set, us
template <class T> ostream &out_iter(ostream &os, const T &map_var) {
os << "{";
REPI(itr, map_var) {
os << *itr;
auto itrcp = itr;
if (++itrcp != map_var.end()) os << ", ";
}
return os << "}";
}
template <typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &map_var) {
return out_iter(os, map_var);
}
template <typename T, typename U> ostream &operator<<(ostream &os, const um<T, U> &map_var) {
os << "{";
REPI(itr, map_var) {
auto [key, value] = *itr;
os << "(" << key << ", " << value << ")";
auto itrcp = itr;
if (++itrcp != map_var.end()) os << ", ";
}
os << "}";
return os;
}
template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, const us<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, const pq<T> &pq_var) {
pq<T> pq_cp(pq_var);
os << "{";
if (!pq_cp.empty()) {
os << pq_cp.top(), pq_cp.pop();
while (!pq_cp.empty()) os << ", " << pq_cp.top(), pq_cp.pop();
}
return os << "}";
}
// tuple
template <size_t N = 0, bool end_line = false, typename... Args> ostream &operator<<(ostream &os, tuple<Args...> &a) {
if constexpr (N < std::tuple_size_v<tuple<Args...>>) {
os << get<N>(a);
if constexpr (N + 1 < std::tuple_size_v<tuple<Args...>>) {
os << ' ';
} else if constexpr (end_line) {
os << '\n';
}
return operator<<<N + 1, end_line>(os, a);
}
return os;
}
template <typename... Args> void print_tuple(tuple<Args...> &a) { operator<<<0, true>(cout, a); }
void pprint() { cout << endl; }
template <class Head, class... Tail> void pprint(Head &&head, Tail &&...tail) {
cout << head;
if (sizeof...(Tail) > 0) cout << ' ';
pprint(move(tail)...);
}
// dump
#define DUMPOUT cerr
void dump_func() { DUMPOUT << endl; }
template <class Head, class... Tail> void dump_func(Head &&head, Tail &&...tail) {
DUMPOUT << head;
if (sizeof...(Tail) > 0) DUMPOUT << ", ";
dump_func(move(tail)...);
}
// chmax ()
template <typename T, typename U, typename Comp = less<>> bool chmax(T &xmax, const U &x, Comp comp = {}) {
if (comp(xmax, x)) {
xmax = x;
return true;
}
return false;
}
// chmin ()
template <typename T, typename U, typename Comp = less<>> bool chmin(T &xmin, const U &x, Comp comp = {}) {
if (comp(x, xmin)) {
xmin = x;
return true;
}
return false;
}
//
#ifndef ONLINE_JUDGE
#define DEBUG_
#endif
#ifdef DEBUG_
#define DEB
#define dump(...) \
DUMPOUT << " " << string(#__VA_ARGS__) << ": " \
<< "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl \
<< " ", \
dump_func(__VA_ARGS__)
#else
#define DEB if (false)
#define dump(...)
#endif
#define VAR(type, ...) \
type __VA_ARGS__; \
cin >> __VA_ARGS__;
template <typename T> istream &operator,(istream &is, T &rhs) { return is >> rhs; }
template <typename T> ostream &operator,(ostream &os, const T &rhs) { return os << ' ' << rhs; }
struct AtCoderInitialize {
static constexpr int IOS_PREC = 15;
static constexpr bool AUTOFLUSH = false;
AtCoderInitialize() {
ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
cout << fixed << setprecision(IOS_PREC);
if (AUTOFLUSH) cout << unitbuf;
}
} ATCODER_INITIALIZE;
void Yn(bool p) { cout << (p ? "Yes" : "No") << endl; }
void YN(bool p) { cout << (p ? "YES" : "NO") << endl; }
/* #endregion */
// #include <atcoder/all>
// using namespace atcoder;
template <typename T = ll> vc<T> get_primes_eratosthenes(T n) {
vc<char> iscomposite(n + 1, 0); //
vc<T> res;
REPM(i, 2, n) {
if (iscomposite[i]) continue;
res.emplace_back(i);
REPMD(j, i * i, n, i) iscomposite[j] = 1;
}
return res;
}
template <class tProposition, typename T = ll> T binarySearchIntMax(T left, T right, tProposition p) {
if (right < left) return -1;
T mid;
while (left + 1 < right) {
mid = (left + right) / 2;
if (p(mid))
left = mid;
else // fn > 0
right = mid - 1;
}
if (p(right))
return right;
else if (p(left))
return left;
else
return -1;
}
template <class tProposition, typename T = ll> T binarySearchIntMin(T left, T right, tProposition p) {
if (right < left) return -1;
T mid;
while (left + 1 < right) {
mid = (left + right) / 2;
if (p(mid))
right = mid;
else // fn > 0
left = mid + 1;
}
if (p(left))
return left;
else if (p(right))
return right;
else
return -1;
}
template <typename T = ll> inline constexpr T add_overflow(T x, T y) {
T result = 0;
if (__builtin_add_overflow(x, y, &result)) return std::numeric_limits<T>::max();
return result;
}
template <typename T = ll> inline constexpr T mul_overflow(T x, T y) {
T result = 0;
if (__builtin_mul_overflow(x, y, &result)) return std::numeric_limits<T>::max();
return result;
}
template <typename T = ll> T powll(T n, T t) {
if (!t) return 1;
// if (t == 1) return n;
// dump(n, t, t >> 1);
// assert(t >= 0);
T a = powll(n, t >> 1); // ⌊t/2⌋
a = mul_overflow(a, a); // ⌊t/2⌋*2
if (t & 1) // ⌊t/2⌋*2 == t-1
a = mul_overflow(a, n); // ⌊t/2⌋*2+1 => t
return a;
}
vll pn = {
1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121,
125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400,
441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024,
1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849, 1936,
2025, 2048, 2116, 2187, 2197, 2209, 2304, 2401, 2500, 2601, 2704, 2744, 2809, 2916,
3025, 3125, 3136, 3249, 3364, 3375, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356,
4489, 4624, 4761, 4900, 4913, 5041, 5184, 5329, 5476, 5625, 5776, 5832, 5929, 6084,
6241, 6400, 6561, 6724, 6859, 6889, 7056, 7225, 7396, 7569, 7744, 7776, 7921, 8000,
8100, 8192, 8281, 8464, 8649, 8836, 9025, 9216, 9261, 9409, 9604, 9801, 10000, 10201,
10404, 10609, 10648, 10816, 11025, 11236, 11449, 11664, 11881, 12100, 12167, 12321, 12544, 12769,
12996, 13225, 13456, 13689, 13824, 13924, 14161, 14400, 14641, 14884, 15129, 15376, 15625, 15876,
16129, 16384, 16641, 16807, 16900, 17161, 17424, 17576, 17689, 17956, 18225, 18496, 18769, 19044,
19321, 19600, 19683, 19881, 20164, 20449, 20736, 21025, 21316, 21609, 21904, 21952, 22201, 22500,
22801, 23104, 23409, 23716, 24025, 24336, 24389, 24649, 24964, 25281, 25600, 25921, 26244, 26569,
26896, 27000, 27225, 27556, 27889, 28224, 28561, 28900, 29241, 29584, 29791, 29929, 30276, 30625,
30976, 31329, 31684, 32041, 32400, 32761, 32768, 33124, 33489, 33856, 34225, 34596, 34969, 35344,
35721, 35937, 36100, 36481, 36864, 37249, 37636, 38025, 38416, 38809, 39204, 39304, 39601, 40000,
40401, 40804, 41209, 41616, 42025, 42436, 42849, 42875, 43264, 43681, 44100, 44521, 44944, 45369,
45796, 46225, 46656, 47089, 47524, 47961, 48400, 48841, 49284, 49729, 50176, 50625, 50653, 51076,
51529, 51984, 52441, 52900, 53361, 53824, 54289, 54756, 54872, 55225, 55696, 56169, 56644, 57121,
57600, 58081, 58564, 59049, 59319, 59536, 60025, 60516, 61009, 61504, 62001, 62500, 63001, 63504,
64000, 64009, 64516, 65025, 65536, 66049, 66564, 67081, 67600, 68121, 68644, 68921, 69169, 69696,
70225, 70756, 71289, 71824, 72361, 72900, 73441, 73984, 74088, 74529, 75076, 75625, 76176, 76729,
77284, 77841, 78125, 78400, 78961, 79507, 79524, 80089, 80656, 81225, 81796, 82369, 82944, 83521,
84100, 84681, 85184, 85264, 85849, 86436, 87025, 87616, 88209, 88804, 89401, 90000, 90601, 91125,
91204, 91809, 92416, 93025, 93636, 94249, 94864, 95481, 96100, 96721, 97336, 97344, 97969, 98596,
99225, 99856, 100000, 100489, 101124, 101761, 102400, 103041, 103684, 103823, 104329, 104976, 105625, 106276,
106929, 107584, 108241, 108900, 109561, 110224, 110592, 110889, 111556, 112225, 112896, 113569, 114244, 114921,
115600, 116281, 116964, 117649, 118336, 119025, 119716, 120409, 121104, 121801, 122500, 123201, 123904, 124609,
125000, 125316, 126025, 126736, 127449, 128164, 128881, 129600, 130321, 131044, 131072, 131769, 132496, 132651,
133225, 133956, 134689, 135424, 136161, 136900, 137641, 138384, 139129, 139876, 140608, 140625, 141376, 142129,
142884, 143641, 144400, 145161, 145924, 146689, 147456, 148225, 148877, 148996, 149769, 150544, 151321, 152100,
152881, 153664, 154449, 155236, 156025, 156816, 157464, 157609, 158404, 159201, 160000, 160801, 161051, 161604,
162409, 163216, 164025, 164836, 165649, 166375, 166464, 167281, 168100, 168921, 169744, 170569, 171396, 172225,
173056, 173889, 174724, 175561, 175616, 176400, 177147, 177241, 178084, 178929, 179776, 180625, 181476, 182329,
183184, 184041, 184900, 185193, 185761, 186624, 187489, 188356, 189225, 190096, 190969, 191844, 192721, 193600,
194481, 195112, 195364, 196249, 197136, 198025, 198916, 199809, 200704, 201601, 202500, 203401, 204304, 205209,
205379, 206116, 207025, 207936, 208849, 209764, 210681, 211600, 212521, 213444, 214369, 215296, 216000, 216225,
217156, 218089, 219024, 219961, 220900, 221841, 222784, 223729, 224676, 225625, 226576, 226981, 227529, 228484,
229441, 230400, 231361, 232324, 233289, 234256, 235225, 236196, 237169, 238144, 238328, 239121, 240100, 241081,
242064, 243049, 244036, 245025, 246016, 247009, 248004, 248832, 249001, 250000, 250047, 251001, 252004, 253009,
254016, 255025, 256036, 257049, 258064, 259081, 260100, 261121, 262144, 263169, 264196, 265225, 266256, 267289,
268324, 269361, 270400, 271441, 272484, 273529, 274576, 274625, 275625, 276676, 277729, 278784};
ll get_kth_perfect_power(const ll k, const vll &primes) {
// a^p <= n a
// p
// k n
ll sz = SIZE(primes);
ll n = binarySearchIntMin(1LL, INF, [&](ll mid) -> bool {
ll cnt = 1;
auto dfs = [&](auto &&dfs, ll val = 1, ll cnt_p = 0, ll ptr = 0) -> void {
if (val > 64) return;
if (ptr == sz) {
if (val == 1) return;
ll bmax = binarySearchIntMax(1LL, INF, [&](ll mid2) -> bool { return powll(mid2, val) <= mid; });
if (bmax == -1) return;
ll dif = bmax - 1; // 1
cnt += (cnt_p % 2 == 0 ? -dif : dif);
return;
} else {
dfs(dfs, val, cnt_p, ptr + 1);
dfs(dfs, val * primes[ptr], cnt_p + 1, ptr + 1);
}
};
dfs(dfs);
return cnt >= k;
});
assert(n != -1);
return n;
}
void check(const vll &primes) {
dump(SIZE(pn), primes);
REPM(i, 1, 600) {
ll target = pn[i - 1];
ll ans = get_kth_perfect_power(i, primes);
pprint(i, target, ans);
std::flush(std::cout);
assert(ans == target);
}
}
// ★
//
// Problem
void solve() {
vll primes = get_primes_eratosthenes(64LL);
// check(primes);
// return;
VAR(ll, t);
REP(_case, 0, t) {
VAR(ll, k); //
ll n = get_kth_perfect_power(k, primes);
pprint(n);
}
}
// entry point
int main() {
solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0