結果
| 問題 |
No.125 悪の花弁
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2021-09-04 18:14:50 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 467 ms / 5,000 ms |
| コード長 | 5,346 bytes |
| コンパイル時間 | 232 ms |
| コンパイル使用メモリ | 82,168 KB |
| 実行使用メモリ | 205,304 KB |
| 最終ジャッジ日時 | 2024-12-21 08:08:39 |
| 合計ジャッジ時間 | 4,031 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 |
ソースコード
import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=1):
self.p=p
self.e=e
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
self.cnt=[0]*(N+1)
for i in range(1,N+1):
ii=i
self.cnt[i]=self.cnt[i-1]
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append((self.factorial[-1]*ii)%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Fact(self,N):
return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod
def Fact_Inve(self,N):
if self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
class Prime:
def __init__(self,N):
assert N<=10**8
self.smallest_prime_factor=[None]*(N+1)
for i in range(2,N+1,2):
self.smallest_prime_factor[i]=2
n=int(N**.5)+1
for p in range(3,n,2):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
for i in range(p**2,N+1,2*p):
if self.smallest_prime_factor[i]==None:
self.smallest_prime_factor[i]=p
for p in range(n,N+1):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]
def Factorize(self,N):
assert N>=1
factorize=defaultdict(int)
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factorize[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
else:
for p in self.primes:
while N%p==0:
N//=p
factorize[p]+=1
if N<p*p:
if N!=1:
factorize[N]+=1
break
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factorize[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
break
else:
if N!=1:
factorize[N]+=1
return factorize
def Divisors(self,N):
assert N>0
divisors=[1]
for p,e in self.Factorize(N).items():
A=[1]
for _ in range(e):
A.append(A[-1]*p)
divisors=[i*j for i in divisors for j in A]
return divisors
def Is_Prime(self,N):
return N==self.smallest_prime_factor[N]
def Totient(self,N):
for p in self.Factorize(N).keys():
N*=p-1
N//=p
return N
def Mebius(self,N):
fact=self.Factorize(N)
for e in fact.values():
if e>=2:
return 0
else:
if len(fact)%2==0:
return 1
else:
return -1
K=int(readline())
C=list(map(int,readline().split()))
S=sum(C)
mod=10**9+7
MD=MOD(mod)
MD.Build_Fact(S)
P=Prime(S)
G=0
cnt=defaultdict(int)
for c in C:
G=GCD(G,c)
divisors=sorted(P.Divisors(G))
for g in divisors:
cnt[S//g]=MD.Fact(S//g)
for c in C:
cnt[S//g]*=MD.Fact_Inve(c//g)
cnt[S//g]%=mod
for p in P.Factorize(G):
for d in divisors:
if S//d%p==0:
cnt[S//d]-=cnt[S//(d*p)]
cnt[S//d]%=mod
ans=0
for i,c in cnt.items():
ans+=c*MD.Pow(i,-1)
ans%=mod
print(ans)
vwxyz