結果
| 問題 |
No.160 最短経路のうち辞書順最小
|
| コンテスト | |
| ユーザー |
keijak
|
| 提出日時 | 2021-09-06 20:38:25 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 7 ms / 5,000 ms |
| コード長 | 4,748 bytes |
| コンパイル時間 | 2,287 ms |
| コンパイル使用メモリ | 205,952 KB |
| 最終ジャッジ日時 | 2025-01-24 08:30:08 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 26 |
ソースコード
#include <bits/stdc++.h>
#define REP_(i, a_, b_, a, b, ...) \
for (int i = (a), END_##i = (b); i < END_##i; ++i)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(x) std::begin(x), std::end(x)
using i64 = long long;
template<typename T, typename U>
inline bool chmax(T &a, U b) {
return a < b and ((a = std::move(b)), true);
}
template<typename T, typename U>
inline bool chmin(T &a, U b) {
return a > b and ((a = std::move(b)), true);
}
template<typename T>
inline int ssize(const T &a) {
return (int) std::size(a);
}
template<typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &a) {
for (auto &x: a) is >> x;
return is;
}
template<typename T, typename U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &a) {
return os << "(" << a.first << ", " << a.second << ")";
}
template<typename Container>
std::ostream &print_seq(const Container &a, std::string_view sep = " ",
std::string_view ends = "\n",
std::ostream &os = std::cout) {
auto b = std::begin(a), e = std::end(a);
for (auto it = std::begin(a); it != e; ++it) {
if (it != b) os << sep;
os << *it;
}
return os << ends;
}
template<typename T, typename = void>
struct is_iterable : std::false_type {};
template<typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
decltype(std::end(std::declval<T>()))>>
: std::true_type {
};
template<typename T, typename = std::enable_if_t<
is_iterable<T>::value &&
!std::is_same<T, std::string_view>::value &&
!std::is_same<T, std::string>::value>>
std::ostream &operator<<(std::ostream &os, const T &a) {
return print_seq(a, ", ", "", (os << "{")) << "}";
}
void print() { std::cout << "\n"; }
template<class T>
void print(const T &x) {
std::cout << x << "\n";
}
template<typename Head, typename... Tail>
void print(const Head &head, Tail... tail) {
std::cout << head << " ";
print(tail...);
}
struct Input {
template<typename T>
operator T() const {
T x;
std::cin >> x;
return x;
}
} in;
#ifdef MY_DEBUG
#include "debug_dump.hpp"
#else
#define DUMP(...)
#endif
using namespace std;
template<int sign = 1>
struct Infinity {
template<typename T>
constexpr operator T() const {
static_assert(sign == 1 or not std::is_unsigned_v<T>,
"must be positive in an unsigned type");
if constexpr (std::numeric_limits<T>::has_infinity) {
return T(sign) * std::numeric_limits<T>::infinity();
} else {
return T(sign) * (std::numeric_limits<T>::max() / T(2));
}
}
constexpr Infinity<sign * -1> operator-() const { return {}; }
template<typename T>
friend constexpr bool operator==(const T &x, const Infinity &y) {
return x == T(y);
}
template<typename T>
friend constexpr bool operator!=(const T &x, const Infinity &y) {
return x != T(y);
}
};
constexpr Infinity<> kBig;
template<class T>
using MinHeap = priority_queue<T, vector<T>, greater<T>>;
struct Edge {
i64 cost;
int to;
};
struct State {
i64 cost;
int node;
};
bool operator>(const State &x, const State &y) { return x.cost > y.cost; }
// Returns min distance from the start node to each node (if exists).
auto search_shortest_path(const vector<vector<Edge>> &g, int start) {
const int n = g.size();
auto mincost = vector(n, (i64) kBig);
MinHeap<State> que;
auto push = [&](i64 cost, int node) -> bool {
if (chmin(mincost[node], cost)) {
que.push(State{cost, node});
return true;
}
return false;
};
assert(push(0LL, start));
while (not que.empty()) {
State cur = que.top();
que.pop();
if (cur.cost != mincost[cur.node]) continue;
for (const auto &e: g[cur.node]) {
auto new_cost = cur.cost + e.cost;
push(new_cost, e.to);
}
}
return mincost;
}
auto solve() {
int n = in, m = in, S = in, G = in;
vector<vector<Edge>> g(n);
REP(i, m) {
int a = in, b = in, c = in;
g[a].push_back({c, b});
g[b].push_back({c, a});
}
auto dist = search_shortest_path(g, G);
int mind = dist[S];
DUMP(dist, mind);
vector<int> path;
int cur = S;
path.push_back(cur);
while (cur != G) {
int nex = kBig;
for (const auto &e: g[cur]) {
if (e.to >= nex) continue;
if (mind - e.cost == dist[e.to]) {
nex = e.to;
}
}
assert(nex != kBig);
path.push_back(nex);
cur = nex;
mind = dist[cur];
}
return path;
}
auto main() -> int {
ios_base::sync_with_stdio(false), cin.tie(nullptr);
cout << std::fixed << std::setprecision(18);
const int t = 1;
REP(test_case, t) {
auto ans = solve();
print_seq(ans);
}
}
keijak