結果
問題 | No.1324 Approximate the Matrix |
ユーザー | hitonanode |
提出日時 | 2021-09-06 22:43:12 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 82 ms / 2,000 ms |
コード長 | 9,703 bytes |
コンパイル時間 | 1,249 ms |
コンパイル使用メモリ | 106,204 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-06-02 03:29:27 |
合計ジャッジ時間 | 4,124 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 79 ms
6,944 KB |
testcase_04 | AC | 80 ms
6,944 KB |
testcase_05 | AC | 79 ms
6,940 KB |
testcase_06 | AC | 82 ms
6,940 KB |
testcase_07 | AC | 78 ms
6,944 KB |
testcase_08 | AC | 7 ms
6,940 KB |
testcase_09 | AC | 6 ms
6,940 KB |
testcase_10 | AC | 11 ms
6,940 KB |
testcase_11 | AC | 20 ms
6,944 KB |
testcase_12 | AC | 5 ms
6,940 KB |
testcase_13 | AC | 3 ms
6,940 KB |
testcase_14 | AC | 22 ms
6,944 KB |
testcase_15 | AC | 9 ms
6,944 KB |
testcase_16 | AC | 3 ms
6,944 KB |
testcase_17 | AC | 14 ms
6,940 KB |
testcase_18 | AC | 5 ms
6,940 KB |
testcase_19 | AC | 5 ms
6,944 KB |
testcase_20 | AC | 3 ms
6,940 KB |
testcase_21 | AC | 3 ms
6,944 KB |
testcase_22 | AC | 3 ms
6,948 KB |
testcase_23 | AC | 13 ms
6,940 KB |
testcase_24 | AC | 30 ms
6,940 KB |
testcase_25 | AC | 16 ms
6,940 KB |
testcase_26 | AC | 15 ms
6,944 KB |
testcase_27 | AC | 8 ms
6,944 KB |
testcase_28 | AC | 2 ms
6,940 KB |
testcase_29 | AC | 1 ms
6,944 KB |
testcase_30 | AC | 1 ms
6,944 KB |
testcase_31 | AC | 1 ms
6,940 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 2 ms
6,944 KB |
testcase_34 | AC | 1 ms
6,944 KB |
testcase_35 | AC | 1 ms
6,944 KB |
testcase_36 | AC | 2 ms
6,944 KB |
testcase_37 | AC | 82 ms
6,940 KB |
testcase_38 | AC | 80 ms
6,940 KB |
testcase_39 | AC | 81 ms
6,944 KB |
testcase_40 | AC | 81 ms
6,940 KB |
testcase_41 | AC | 81 ms
6,940 KB |
testcase_42 | AC | 4 ms
6,940 KB |
testcase_43 | AC | 5 ms
6,940 KB |
testcase_44 | AC | 4 ms
6,944 KB |
ソースコード
#line 1 "combinatorial_opt/test/mincostflow.yuki1324.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1324" #line 2 "data_structure/radix_heap.hpp" #include <array> #include <cstddef> #include <limits> #include <tuple> #include <type_traits> #include <utility> #include <vector> // Radix heap for unsigned integer template <class uint, class label, typename std::enable_if<std::is_unsigned<uint>::value>::type * = nullptr> class radix_heap { int sz; uint last; std::array<std::vector<std::pair<uint, label>>, std::numeric_limits<uint>::digits + 1> v; template <class U, typename std::enable_if<sizeof(U) == 4>::type * = nullptr> static inline int bucket(U x) noexcept { return x ? 32 - __builtin_ctz(x) : 0; } template <class U, typename std::enable_if<sizeof(U) == 8>::type * = nullptr> static inline int bucket(U x) noexcept { return x ? 64 - __builtin_ctzll(x) : 0; } void pull() { if (!v[0].empty()) return; int i = 1; while (v[i].empty()) ++i; last = v[i].back().first; for (int j = 0; j < int(v[i].size()); j++) last = std::min(last, v[i][j].first); for (int j = 0; j < int(v[i].size()); j++) { v[bucket(v[i][j].first ^ last)].emplace_back(std::move(v[i][j])); } v[i].clear(); } public: radix_heap() : sz(0), last(0) {} std::size_t size() const noexcept { return sz; } bool empty() const noexcept { return sz == 0; } void push(uint x, const label &val) { ++sz, v[bucket(x ^ last)].emplace_back(x, val); } void push(uint x, label &&val) { ++sz, v[bucket(x ^ last)].emplace_back(x, std::move(val)); } template <class... Args> void emplace(uint x, Args &&...args) { ++sz, v[bucket(x ^ last)].emplace_back(std::piecewise_construct, std::forward_as_tuple(x), std::forward_as_tuple(args...)); } void pop() { pull(), --sz, v[0].pop_back(); } std::pair<uint, label> top() { return pull(), v[0].back(); } uint top_key() { return pull(), v[0].back().first; } label &top_label() { return pull(), v[0].back().second; } void clear() { sz = 0, last = 0; for (auto &vec : v) vec.clear(); } void swap(radix_heap<uint, label> &a) { std::swap(sz, a.sz), std::swap(last, a.last), v.swap(a.v); } }; #line 3 "combinatorial_opt/mincostflow_nonegativeloop.hpp" #include <cassert> #line 5 "combinatorial_opt/mincostflow_nonegativeloop.hpp" #include <queue> #line 8 "combinatorial_opt/mincostflow_nonegativeloop.hpp" // CUT begin // Minimum cost flow WITH NO NEGATIVE CYCLE (just negative cost edge is allowed) // Verified: // - SRM 770 Div1 Medium https://community.topcoder.com/stat?c=problem_statement&pm=15702 // - CodeChef LTIME98 Ancient Magic https://www.codechef.com/problems/ANCT template <class Cap = long long, class Cost = long long, Cost INF_COST = std::numeric_limits<Cost>::max() / 2> struct MinCostFlow { struct _edge { int to, rev; Cap cap; Cost cost; template <class Ostream> friend Ostream &operator<<(Ostream &os, const _edge &e) { return os << '(' << e.to << ',' << e.rev << ',' << e.cap << ',' << e.cost << ')'; } }; bool _is_dual_infeasible; int V; std::vector<std::vector<_edge>> g; std::vector<Cost> dist; std::vector<int> prevv, preve; std::vector<Cost> dual; // dual[V]: potential std::vector<std::pair<int, int>> pos; bool _initialize_dual_dag() { std::vector<int> deg_in(V); for (int i = 0; i < V; i++) { for (const auto &e : g[i]) deg_in[e.to] += (e.cap > 0); } std::vector<int> st; st.reserve(V); for (int i = 0; i < V; i++) { if (!deg_in[i]) st.push_back(i); } for (int n = 0; n < V; n++) { if (int(st.size()) == n) return false; // Not DAG int now = st[n]; for (const auto &e : g[now]) { if (!e.cap) continue; deg_in[e.to]--; if (deg_in[e.to] == 0) st.push_back(e.to); if (dual[e.to] >= dual[now] + e.cost) dual[e.to] = dual[now] + e.cost; } } return true; } bool _initialize_dual_spfa() { // Find feasible dual's when negative cost edges exist dual.assign(V, 0); std::queue<int> q; std::vector<int> in_queue(V); std::vector<int> nvis(V); for (int i = 0; i < V; i++) q.push(i), in_queue[i] = true; while (q.size()) { int now = q.front(); q.pop(), in_queue[now] = false; if (nvis[now] > V) return false; // Negative cycle exists nvis[now]++; for (const auto &e : g[now]) { if (!e.cap) continue; if (dual[e.to] > dual[now] + e.cost) { dual[e.to] = dual[now] + e.cost; if (!in_queue[e.to]) in_queue[e.to] = true, q.push(e.to); } } } return true; } bool initialize_dual() { return !_is_dual_infeasible or _initialize_dual_dag() or _initialize_dual_spfa(); } void _dijkstra(int s) { // O(ElogV) prevv.assign(V, -1); preve.assign(V, -1); dist.assign(V, INF_COST); dist[s] = 0; typedef typename std::make_unsigned<Cost>::type UCost; using P = std::pair<UCost, int>; // radix_heap<UCost, int> q; std::priority_queue<P, std::vector<P>, std::greater<P>> q; q.emplace(0, s); while (!q.empty()) { P p = q.top(); q.pop(); int v = p.second; if (dist[v] < p.first) continue; for (int i = 0; i < (int)g[v].size(); i++) { _edge &e = g[v][i]; UCost c = dist[v] + e.cost + dual[v] - dual[e.to]; if (e.cap > 0 and dist[e.to] > c) { dist[e.to] = c, prevv[e.to] = v, preve[e.to] = i; assert(dist[e.to] >= 0); q.emplace(dist[e.to], e.to); } } } } MinCostFlow(int V = 0) : _is_dual_infeasible(false), V(V), g(V), dual(V, 0) { static_assert(INF_COST > 0, "INF_COST must be positive"); } int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from and from < V); assert(0 <= to and to < V); assert(cap >= 0); if (cost < 0) _is_dual_infeasible = true; pos.emplace_back(from, g[from].size()); g[from].push_back({to, (int)g[to].size() + (from == to), cap, cost}); g[to].push_back({from, (int)g[from].size() - 1, (Cap)0, -cost}); return int(pos.size()) - 1; } // Flush flow f from s to t. Graph must not have negative cycle. std::pair<Cap, Cost> flow(int s, int t, const Cap &flow_limit) { if (!initialize_dual()) throw; // Fail to find feasible dual Cost cost = 0; Cap flow_rem = flow_limit; while (flow_rem > 0) { _dijkstra(s); if (dist[t] == INF_COST) break; for (int v = 0; v < V; v++) dual[v] = std::min(dual[v] + dist[v], INF_COST); Cap d = flow_rem; for (int v = t; v != s; v = prevv[v]) d = std::min(d, g[prevv[v]][preve[v]].cap); flow_rem -= d; cost += d * (dual[t] - dual[s]); for (int v = t; v != s; v = prevv[v]) { _edge &e = g[prevv[v]][preve[v]]; e.cap -= d; g[v][e.rev].cap += d; } } return std::make_pair(flow_limit - flow_rem, cost); } struct edge { int from, to; Cap cap, flow; Cost cost; template <class Ostream> friend Ostream &operator<<(Ostream &os, const edge &e) { return os << '(' << e.from << "->" << e.to << ',' << e.flow << '/' << e.cap << ",$" << e.cost << ')'; } }; edge get_edge(int edge_id) const { int m = int(pos.size()); assert(0 <= edge_id and edge_id < m); auto _e = g[pos[edge_id].first][pos[edge_id].second]; auto _re = g[_e.to][_e.rev]; return {pos[edge_id].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost}; } std::vector<edge> edges() const { std::vector<edge> ret(pos.size()); for (int i = 0; i < int(pos.size()); i++) ret[i] = get_edge(i); return ret; } template <class Ostream> friend Ostream &operator<<(Ostream &os, const MinCostFlow &mcf) { os << "[MinCostFlow]V=" << mcf.V << ":"; for (int i = 0; i < mcf.V; i++) { for (auto &e : mcf.g[i]) os << "\n" << i << "->" << e.to << ":cap" << e.cap << ",$" << e.cost; } return os; } }; #line 3 "combinatorial_opt/test/mincostflow.yuki1324.test.cpp" #include <iostream> #line 5 "combinatorial_opt/test/mincostflow.yuki1324.test.cpp" using namespace std; int main() { cin.tie(nullptr), ios::sync_with_stdio(false); int N, K; cin >> N >> K; vector<int> A(N), B(N); vector<vector<int>> P(N, vector<int>(N)); for (auto &x : A) cin >> x; for (auto &x : B) cin >> x; for (auto &v : P) { for (auto &x : v) cin >> x; } const int gs = N * 2, gt = gs + 1; MinCostFlow<int, long long> graph(gt + 1); long long ret = 0; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { ret += P[i][j] * P[i][j]; for (int a = 0; a < A[i]; a++) graph.add_edge(i, j + N, 1, 2 * (a - P[i][j]) + 1); } graph.add_edge(gs, i, A[i], 0); graph.add_edge(i + N, gt, B[i], 0); } cout << ret + graph.flow(gs, gt, K).second << '\n'; }