結果

問題 No.1666 累乗数
ユーザー FF256grhyFF256grhy
提出日時 2021-09-10 13:36:56
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 689 ms / 2,000 ms
コード長 5,218 bytes
コンパイル時間 1,890 ms
コンパイル使用メモリ 203,936 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-11 00:08:25
合計ジャッジ時間 15,570 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 16 ms
5,248 KB
testcase_01 AC 689 ms
5,376 KB
testcase_02 AC 688 ms
5,376 KB
testcase_03 AC 685 ms
5,376 KB
testcase_04 AC 671 ms
5,376 KB
testcase_05 AC 682 ms
5,376 KB
testcase_06 AC 664 ms
5,376 KB
testcase_07 AC 670 ms
5,376 KB
testcase_08 AC 652 ms
5,376 KB
testcase_09 AC 669 ms
5,376 KB
testcase_10 AC 667 ms
5,376 KB
testcase_11 AC 663 ms
5,376 KB
testcase_12 AC 675 ms
5,376 KB
testcase_13 AC 674 ms
5,376 KB
testcase_14 AC 686 ms
5,376 KB
testcase_15 AC 665 ms
5,376 KB
testcase_16 AC 666 ms
5,376 KB
testcase_17 AC 668 ms
5,376 KB
testcase_18 AC 671 ms
5,376 KB
testcase_19 AC 671 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using LL = long long int;
#define incII(i, l, r) for(LL i = (l)    ; i <= (r); i++)
#define incIX(i, l, r) for(LL i = (l)    ; i <  (r); i++)
#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)
#define incXX(i, l, r) for(LL i = (l) + 1; i <  (r); i++)
#define decII(i, l, r) for(LL i = (r)    ; i >= (l); i--)
#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)
#define decXI(i, l, r) for(LL i = (r)    ; i >  (l); i--)
#define decXX(i, l, r) for(LL i = (r) - 1; i >  (l); i--)
#define inc(i, n)  incIX(i, 0, n)
#define dec(i, n)  decIX(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec1(i, n) decII(i, 1, n)
auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };
auto inIX = [](auto x, auto l, auto r) { return (l <= x && x <  r); };
auto inXI = [](auto x, auto l, auto r) { return (l <  x && x <= r); };
auto inXX = [](auto x, auto l, auto r) { return (l <  x && x <  r); };
auto setmin   = [](auto & a, auto b) { return (b <  a ? a = b, true : false); };
auto setmax   = [](auto & a, auto b) { return (b >  a ? a = b, true : false); };
auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };
auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define MT make_tuple
#define FI first
#define SE second
#define FR front()
#define BA back()
#define ALL(c) c.begin(), c.end()
#define RALL(c) c.rbegin(), c.rend()
#define RV(c) reverse(ALL(c))
#define SC static_cast
#define SI(c) SC<int>(c.size())
#define SL(c) SC<LL >(c.size())
#define RF(e, c) for(auto & e: c)
#define SF(c, ...) for(auto & [__VA_ARGS__]: c)
#define until(e) while(! (e))
#define if_not(e) if(! (e))
#define ef else if
#define UR assert(false)
auto * IS = & cin;
auto * OS = & cout;
array<string, 3> SEQ = { "", " ", "" };
// input
template<typename T> T in() { T a; (* IS) >> a; return a; }
// input: tuple
template<int I, typename U> void tin_(istream & is, U & t) {
	if constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); }
}
template<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; }
template<typename ... T> auto tin() { return in<tuple<T ...>>(); }
// input: array
template<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; }
template<typename T, size_t N> auto ain() { return in<array<T, N>>(); }
// input: multi-dimensional vector
template<typename T> T vin() { T v; (* IS) >> v; return v; }
template<typename T, typename N, typename ... M> auto vin(N n, M ... m) {
	vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;
}
// input: multi-column (tuple<vector>)
template<typename U, int I> void colin_([[maybe_unused]] U & t) { }
template<typename U, int I, typename A, typename ... B> void colin_(U & t) {
	get<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);
}
template<typename ... T> auto colin(int n) {
	tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;
}
// output
void out_([[maybe_unused]] string s) { }
template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }
template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }
auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };
auto out  = [](auto ... a) { outF("", " " , "\n", a ...); };
auto outS = [](auto ... a) { outF("", " " , " " , a ...); };
auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); };
auto outN = [](auto ... a) { outF("", ""  , ""  , a ...); };
// output: multi-dimensional vector
template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {
	os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]);
}
template<typename T> void vout_(T && v) { (* OS) << v; }
template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {
	inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); }
}
template<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }
template<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS)      << flush; }

// ---- ----

int main() {
	auto floor_of_nth_root = [](LL x, LL n) -> LL {
		assert(x >= 0 && n >= 1);
		auto f = [&](LL r) -> bool {
			LL p = 1;
			inc(i, n) {
				p *= r;
				if(p > x) { return false; }
			}
			return true;
		};
		LL r = powl(x, 1.0L / n);
		r--;
		assert(f(r));
		while(f(r + 1)) { r++; }
		return r;
	};
	
	const int M = 59;
	auto t = in<int>();
	inc(tt, t) {
		auto k = in<LL>();
		auto f = [&](LL x) -> bool {
			vector<LL> c(M + 1);
			LL s = 1;
			decII(i, 2, M) {
				c[i] = floor_of_nth_root(x, i) - 1;
				for(int j = 2 * i; j <= M; j += i) { c[i] -= c[j]; }
				s += c[i];
			}
			return (s >= k);
		};
		
		LL ng = 0, ok = 1'000'000'000'000'000'000;
		until(abs(ok - ng) == 1) {
			LL mid = (ok + ng) / 2;
			(f(mid) ? ok : ng) = mid;
		}
		out(ok);
	}
}
0