結果
問題 | No.1666 累乗数 |
ユーザー | FF256grhy |
提出日時 | 2021-09-10 13:36:56 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 849 ms / 2,000 ms |
コード長 | 5,218 bytes |
コンパイル時間 | 2,381 ms |
コンパイル使用メモリ | 197,372 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2025-01-03 02:05:01 |
合計ジャッジ時間 | 19,288 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 19 ms
5,248 KB |
testcase_01 | AC | 849 ms
5,248 KB |
testcase_02 | AC | 848 ms
5,248 KB |
testcase_03 | AC | 841 ms
5,248 KB |
testcase_04 | AC | 841 ms
5,248 KB |
testcase_05 | AC | 824 ms
5,248 KB |
testcase_06 | AC | 832 ms
5,248 KB |
testcase_07 | AC | 810 ms
5,248 KB |
testcase_08 | AC | 818 ms
5,248 KB |
testcase_09 | AC | 822 ms
5,248 KB |
testcase_10 | AC | 827 ms
5,248 KB |
testcase_11 | AC | 830 ms
5,248 KB |
testcase_12 | AC | 837 ms
5,248 KB |
testcase_13 | AC | 837 ms
5,248 KB |
testcase_14 | AC | 844 ms
5,248 KB |
testcase_15 | AC | 832 ms
5,248 KB |
testcase_16 | AC | 830 ms
5,248 KB |
testcase_17 | AC | 827 ms
5,248 KB |
testcase_18 | AC | 827 ms
5,248 KB |
testcase_19 | AC | 822 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using LL = long long int; #define incII(i, l, r) for(LL i = (l) ; i <= (r); i++) #define incIX(i, l, r) for(LL i = (l) ; i < (r); i++) #define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++) #define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++) #define decII(i, l, r) for(LL i = (r) ; i >= (l); i--) #define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--) #define decXI(i, l, r) for(LL i = (r) ; i > (l); i--) #define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--) #define inc(i, n) incIX(i, 0, n) #define dec(i, n) decIX(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec1(i, n) decII(i, 1, n) auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); }; auto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); }; auto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); }; auto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); }; auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); }; auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); }; auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); }; auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); }; #define PB push_back #define EB emplace_back #define MP make_pair #define MT make_tuple #define FI first #define SE second #define FR front() #define BA back() #define ALL(c) c.begin(), c.end() #define RALL(c) c.rbegin(), c.rend() #define RV(c) reverse(ALL(c)) #define SC static_cast #define SI(c) SC<int>(c.size()) #define SL(c) SC<LL >(c.size()) #define RF(e, c) for(auto & e: c) #define SF(c, ...) for(auto & [__VA_ARGS__]: c) #define until(e) while(! (e)) #define if_not(e) if(! (e)) #define ef else if #define UR assert(false) auto * IS = & cin; auto * OS = & cout; array<string, 3> SEQ = { "", " ", "" }; // input template<typename T> T in() { T a; (* IS) >> a; return a; } // input: tuple template<int I, typename U> void tin_(istream & is, U & t) { if constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); } } template<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; } template<typename ... T> auto tin() { return in<tuple<T ...>>(); } // input: array template<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; } template<typename T, size_t N> auto ain() { return in<array<T, N>>(); } // input: multi-dimensional vector template<typename T> T vin() { T v; (* IS) >> v; return v; } template<typename T, typename N, typename ... M> auto vin(N n, M ... m) { vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v; } // input: multi-column (tuple<vector>) template<typename U, int I> void colin_([[maybe_unused]] U & t) { } template<typename U, int I, typename A, typename ... B> void colin_(U & t) { get<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t); } template<typename ... T> auto colin(int n) { tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t; } // output void out_([[maybe_unused]] string s) { } template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; } template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); } auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; }; auto out = [](auto ... a) { outF("", " " , "\n", a ...); }; auto outS = [](auto ... a) { outF("", " " , " " , a ...); }; auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); }; auto outN = [](auto ... a) { outF("", "" , "" , a ...); }; // output: multi-dimensional vector template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) { os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]); } template<typename T> void vout_(T && v) { (* OS) << v; } template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) { inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); } } template<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; } template<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; } // ---- ---- int main() { auto floor_of_nth_root = [](LL x, LL n) -> LL { assert(x >= 0 && n >= 1); auto f = [&](LL r) -> bool { LL p = 1; inc(i, n) { p *= r; if(p > x) { return false; } } return true; }; LL r = powl(x, 1.0L / n); r--; assert(f(r)); while(f(r + 1)) { r++; } return r; }; const int M = 59; auto t = in<int>(); inc(tt, t) { auto k = in<LL>(); auto f = [&](LL x) -> bool { vector<LL> c(M + 1); LL s = 1; decII(i, 2, M) { c[i] = floor_of_nth_root(x, i) - 1; for(int j = 2 * i; j <= M; j += i) { c[i] -= c[j]; } s += c[i]; } return (s >= k); }; LL ng = 0, ok = 1'000'000'000'000'000'000; until(abs(ok - ng) == 1) { LL mid = (ok + ng) / 2; (f(mid) ? ok : ng) = mid; } out(ok); } }