結果

問題 No.1676 Coin Trade (Single)
ユーザー hitonanodehitonanode
提出日時 2021-09-10 21:39:37
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 39 ms / 2,000 ms
コード長 11,988 bytes
コンパイル時間 3,503 ms
コンパイル使用メモリ 147,816 KB
実行使用メモリ 8,576 KB
最終ジャッジ日時 2024-06-11 22:54:38
合計ジャッジ時間 6,756 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 29 ms
6,944 KB
testcase_04 AC 26 ms
6,940 KB
testcase_05 AC 25 ms
6,944 KB
testcase_06 AC 25 ms
6,940 KB
testcase_07 AC 20 ms
6,944 KB
testcase_08 AC 14 ms
6,940 KB
testcase_09 AC 21 ms
6,940 KB
testcase_10 AC 22 ms
6,940 KB
testcase_11 AC 31 ms
7,040 KB
testcase_12 AC 17 ms
6,944 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 2 ms
6,940 KB
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 2 ms
6,940 KB
testcase_17 AC 2 ms
6,944 KB
testcase_18 AC 2 ms
6,944 KB
testcase_19 AC 2 ms
6,944 KB
testcase_20 AC 2 ms
6,944 KB
testcase_21 AC 2 ms
6,940 KB
testcase_22 AC 2 ms
6,944 KB
testcase_23 AC 2 ms
6,940 KB
testcase_24 AC 2 ms
6,944 KB
testcase_25 AC 2 ms
6,944 KB
testcase_26 AC 2 ms
6,940 KB
testcase_27 AC 2 ms
6,940 KB
testcase_28 AC 2 ms
6,944 KB
testcase_29 AC 2 ms
6,944 KB
testcase_30 AC 2 ms
6,944 KB
testcase_31 AC 2 ms
6,944 KB
testcase_32 AC 2 ms
6,940 KB
testcase_33 AC 39 ms
8,448 KB
testcase_34 AC 38 ms
8,448 KB
testcase_35 AC 38 ms
8,576 KB
testcase_36 AC 39 ms
8,448 KB
testcase_37 AC 39 ms
8,576 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr)
#else
#define dbg(x) (x)
#define dbgif(cond, x) 0
#endif

// Minimum cost flow WITH NO NEGATIVE CYCLE (just negative cost edge is allowed)
// Verified:
// - SRM 770 Div1 Medium https://community.topcoder.com/stat?c=problem_statement&pm=15702
// - CodeChef LTIME98 Ancient Magic https://www.codechef.com/problems/ANCT
template <class Cap = long long, class Cost = long long, Cost INF_COST = std::numeric_limits<Cost>::max() / 2>
struct MinCostFlow {
    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
        template <class Ostream> friend Ostream &operator<<(Ostream &os, const _edge &e) {
            return os << '(' << e.to << ',' << e.rev << ',' << e.cap << ',' << e.cost << ')';
        }
    };
    bool _is_dual_infeasible;
    int V;
    std::vector<std::vector<_edge>> g;
    std::vector<Cost> dist;
    std::vector<int> prevv, preve;
    std::vector<Cost> dual; // dual[V]: potential
    std::vector<std::pair<int, int>> pos;

    bool _initialize_dual_dag() {
        std::vector<int> deg_in(V);
        for (int i = 0; i < V; i++) {
            for (const auto &e : g[i]) deg_in[e.to] += (e.cap > 0);
        }
        std::vector<int> st;
        st.reserve(V);
        for (int i = 0; i < V; i++) {
            if (!deg_in[i]) st.push_back(i);
        }
        for (int n = 0; n < V; n++) {
            if (int(st.size()) == n) return false; // Not DAG
            int now = st[n];
            for (const auto &e : g[now]) {
                if (!e.cap) continue;
                deg_in[e.to]--;
                if (deg_in[e.to] == 0) st.push_back(e.to);
                if (dual[e.to] >= dual[now] + e.cost) dual[e.to] = dual[now] + e.cost;
            }
        }
        return true;
    }

    bool _initialize_dual_spfa() { // Find feasible dual's when negative cost edges exist
        dual.assign(V, 0);
        std::queue<int> q;
        std::vector<int> in_queue(V);
        std::vector<int> nvis(V);
        for (int i = 0; i < V; i++) q.push(i), in_queue[i] = true;
        while (q.size()) {
            int now = q.front();
            q.pop(), in_queue[now] = false;
            if (nvis[now] > V) return false; // Negative cycle exists
            nvis[now]++;
            for (const auto &e : g[now]) {
                if (!e.cap) continue;
                if (dual[e.to] > dual[now] + e.cost) {
                    dual[e.to] = dual[now] + e.cost;
                    if (!in_queue[e.to]) in_queue[e.to] = true, q.push(e.to);
                }
            }
        }
        return true;
    }

    bool initialize_dual() {
        return !_is_dual_infeasible or _initialize_dual_dag() or _initialize_dual_spfa();
    }

    template <class heap> void _dijkstra(int s) { // O(ElogV)
        prevv.assign(V, -1);
        preve.assign(V, -1);
        dist.assign(V, INF_COST);
        dist[s] = 0;
        heap q;
        q.emplace(0, s);
        while (!q.empty()) {
            auto p = q.top();
            q.pop();
            int v = p.second;
            if (dist[v] < Cost(p.first)) continue;
            for (int i = 0; i < (int)g[v].size(); i++) {
                _edge &e = g[v][i];
                auto c = dist[v] + e.cost + dual[v] - dual[e.to];
                if (e.cap > 0 and dist[e.to] > c) {
                    dist[e.to] = c, prevv[e.to] = v, preve[e.to] = i;
                    q.emplace(dist[e.to], e.to);
                }
            }
        }
    }

    MinCostFlow(int V = 0) : _is_dual_infeasible(false), V(V), g(V), dual(V, 0) {
        static_assert(INF_COST > 0, "INF_COST must be positive");
    }

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from and from < V);
        assert(0 <= to and to < V);
        assert(cap >= 0);
        if (cost < 0) _is_dual_infeasible = true;
        pos.emplace_back(from, g[from].size());
        g[from].push_back({to, (int)g[to].size() + (from == to), cap, cost});
        g[to].push_back({from, (int)g[from].size() - 1, (Cap)0, -cost});
        return int(pos.size()) - 1;
    }

    // Flush flow f from s to t. Graph must not have negative cycle.
    using Pque = std::priority_queue<std::pair<Cost, int>, std::vector<std::pair<Cost, int>>, std::greater<std::pair<Cost, int>>>;
    template <class heap = Pque> std::pair<Cap, Cost> flow(int s, int t, const Cap &flow_limit) {
        // You can also use radix_heap<typename std::make_unsigned<Cost>::type, int> as prique
        if (!initialize_dual()) throw; // Fail to find feasible dual
        Cost cost = 0;
        Cap flow_rem = flow_limit;
        while (flow_rem > 0) {
            _dijkstra<heap>(s);
            if (dist[t] == INF_COST) break;
            for (int v = 0; v < V; v++) dual[v] = std::min(dual[v] + dist[v], INF_COST);
            Cap d = flow_rem;
            for (int v = t; v != s; v = prevv[v]) d = std::min(d, g[prevv[v]][preve[v]].cap);
            flow_rem -= d;
            cost += d * (dual[t] - dual[s]);
            for (int v = t; v != s; v = prevv[v]) {
                _edge &e = g[prevv[v]][preve[v]];
                e.cap -= d;
                g[v][e.rev].cap += d;
            }
        }
        return std::make_pair(flow_limit - flow_rem, cost);
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
        template <class Ostream> friend Ostream &operator<<(Ostream &os, const edge &e) {
            return os << '(' << e.from << "->" << e.to << ',' << e.flow << '/' << e.cap << ",$" << e.cost << ')';
        }
    };

    edge get_edge(int edge_id) const {
        int m = int(pos.size());
        assert(0 <= edge_id and edge_id < m);
        auto _e = g[pos[edge_id].first][pos[edge_id].second];
        auto _re = g[_e.to][_e.rev];
        return {pos[edge_id].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost};
    }
    std::vector<edge> edges() const {
        std::vector<edge> ret(pos.size());
        for (int i = 0; i < int(pos.size()); i++) ret[i] = get_edge(i);
        return ret;
    }

    template <class Ostream> friend Ostream &operator<<(Ostream &os, const MinCostFlow &mcf) {
        os << "[MinCostFlow]V=" << mcf.V << ":";
        for (int i = 0; i < mcf.V; i++) {
            for (auto &e : mcf.g[i]) os << "\n" << i << "->" << e.to << ":cap" << e.cap << ",$" << e.cost;
        }
        return os;
    }
};


int main() {
    int N, K;
    cin >> N >> K;
    vector<int> A(N);
    vector<vector<int>> B(N);
    MinCostFlow<int, lint> mcf;
    constexpr lint INF = 1LL << 60;
    vector<lint> dp(N + 1, -INF);
    lint dpemp = 0;
    lint ret = 0;
    REP(i, N) {
        int m;
        cin >> A[i] >> m;
        B[i].resize(m);
        cin >> B[i];
        for (auto prv : B[i]) {
            chmax(dpemp, dp[prv] + A[i]);
        }
        chmax(dp[i + 1], dpemp - A[i]);
    }
    dbg(dp);
    cout << dpemp << '\n';
}
0