結果
| 問題 |
No.1678 Coin Trade (Multiple)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-09-10 22:51:04 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 1,812 ms / 5,000 ms |
| コード長 | 5,355 bytes |
| コンパイル時間 | 16,517 ms |
| コンパイル使用メモリ | 377,468 KB |
| 実行使用メモリ | 27,276 KB |
| 最終ジャッジ日時 | 2024-06-12 02:34:23 |
| 合計ジャッジ時間 | 43,304 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 56 |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
// Minimum cost flow.
// Verified by: yukicoder No.1301 Strange Graph Shortest Path
// (https://yukicoder.me/submissions/590401)
// AtCoder Library Practice Contest - E
// (https://atcoder.jp/contests/practice2/submissions/22478556)
// ACL Contest 1 - C
// (https://atcoder.jp/contests/acl1/submissions/23898415)
type Cap = isize;
type Cost = i64;
#[derive(Debug, Clone, Copy)]
struct Edge {
to: usize,
cap: Cap,
cost: Cost,
rev: usize, // rev is the position of reverse edge in graph[to]
}
#[derive(Debug, Clone)]
struct MinCostFlow {
n: usize,
graph: Vec<Vec<Edge>>,
h: Vec<Cost>, // potential,
dist: Vec<Cost>, // minimum distance
prev: Vec<(usize, usize)>, // previous vertex and edge
}
impl MinCostFlow {
// Initializes this solver. n is the number of vertices.
fn new(n: usize) -> Self {
MinCostFlow {
n: n,
graph: vec![vec![]; n],
h: vec![0; n],
dist: vec![0; n],
prev: vec![(0, 0); n],
}
}
fn add_edge(&mut self, from: usize, to: usize, cap: Cap, cost: Cost) {
let fst = Edge {
to: to,
cap: cap,
cost: cost,
rev: self.graph[to].len(),
};
self.graph[from].push(fst);
let snd = Edge {
to: from,
cap: 0,
cost: -cost,
rev: self.graph[from].len() - 1,
};
self.graph[to].push(snd);
}
// Calcucates the minimum cost flow
// whose source is s, sink is t, and flow is f.
fn min_cost_flow(&mut self, s: usize, t: usize, mut f: Cap) -> Cost {
let n = self.n;
let inf: Cost = std::i64::MAX / 10; // ?????
let mut res = 0;
let h = &mut self.h;
let dist = &mut self.dist;
while f > 0 {
let mut que = std::collections::BinaryHeap::<(Cost, usize)>::new();
for i in 0..n {
dist[i] = inf;
}
dist[s] = 0;
que.push((0, s));
while let Some((d, v)) = que.pop() {
let d = -d;
if dist[v] < d {
continue;
}
for (i, &e) in self.graph[v].iter().enumerate() {
if e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to] {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
self.prev[e.to] = (v, i);
que.push((-dist[e.to], e.to));
}
}
}
if dist[t] == inf {
return -1; // Cannot add flow anymore
}
for i in 0..n {
h[i] += dist[i];
}
// Add flow fully
let mut d = f;
let mut i = t;
while i != s {
let (pv, pe) = self.prev[i];
d = std::cmp::min(d, self.graph[pv][pe].cap);
i = pv;
}
f -= d;
res += d as Cost * h[t];
i = t;
while i != s {
let (pv, pe) = self.prev[i];
self.graph[pv][pe].cap -= d;
let erev = self.graph[pv][pe].rev;
self.graph[i][erev].cap += d;
i = pv;
}
}
return res;
}
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
fn solve() {
input! {
n: usize, k: isize,
ab: [(i64, [usize1]); n],
}
let mut mcf = MinCostFlow::new(2 * n + 1);
let big = 1i64 << 40;
for i in 0..n {
let (a, ref b) = ab[i];
mcf.add_edge(n + i, i, k, a);
mcf.add_edge(i, n + i + 1, k, big - a);
for &b in b {
mcf.add_edge(b, i, 1, big * (i - b) as i64);
}
}
let ans = mcf.min_cost_flow(n, 2 * n, k);
println!("{}", big * k as i64 * n as i64 - ans);
}