結果
問題 | No.1676 Coin Trade (Single) |
ユーザー | leaf_1415 |
提出日時 | 2021-09-10 22:59:20 |
言語 | C++11 (gcc 13.3.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 9,320 bytes |
コンパイル時間 | 1,213 ms |
コンパイル使用メモリ | 117,916 KB |
実行使用メモリ | 24,316 KB |
最終ジャッジ日時 | 2024-06-12 03:03:10 |
合計ジャッジ時間 | 4,608 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
7,884 KB |
testcase_01 | AC | 5 ms
7,808 KB |
testcase_02 | AC | 6 ms
7,808 KB |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | AC | 125 ms
24,168 KB |
testcase_06 | AC | 126 ms
24,316 KB |
testcase_07 | AC | 99 ms
21,204 KB |
testcase_08 | AC | 52 ms
15,224 KB |
testcase_09 | AC | 93 ms
20,984 KB |
testcase_10 | AC | 95 ms
21,664 KB |
testcase_11 | RE | - |
testcase_12 | AC | 71 ms
18,232 KB |
testcase_13 | AC | 5 ms
7,808 KB |
testcase_14 | AC | 5 ms
7,808 KB |
testcase_15 | AC | 6 ms
7,808 KB |
testcase_16 | AC | 6 ms
7,936 KB |
testcase_17 | AC | 6 ms
7,808 KB |
testcase_18 | AC | 5 ms
7,808 KB |
testcase_19 | AC | 5 ms
7,936 KB |
testcase_20 | AC | 4 ms
7,856 KB |
testcase_21 | AC | 5 ms
7,808 KB |
testcase_22 | AC | 4 ms
7,808 KB |
testcase_23 | AC | 4 ms
7,776 KB |
testcase_24 | AC | 4 ms
7,808 KB |
testcase_25 | AC | 5 ms
7,808 KB |
testcase_26 | AC | 5 ms
7,804 KB |
testcase_27 | AC | 5 ms
7,936 KB |
testcase_28 | AC | 4 ms
7,808 KB |
testcase_29 | AC | 3 ms
7,936 KB |
testcase_30 | AC | 5 ms
7,808 KB |
testcase_31 | AC | 4 ms
7,808 KB |
testcase_32 | AC | 4 ms
7,804 KB |
testcase_33 | RE | - |
testcase_34 | RE | - |
testcase_35 | RE | - |
testcase_36 | RE | - |
testcase_37 | RE | - |
ソースコード
#include <iostream> #include <iomanip> #include <cstdio> #include <cmath> #include <ctime> #include <cstdlib> #include <cassert> #include <vector> #include <list> #include <stack> #include <queue> #include <deque> #include <map> #include <set> #include <bitset> #include <string> #include <algorithm> #include <utility> #include <complex> #include <unordered_set> #include <unordered_map> #define rep(x, s, t) for(llint x = (s); (x) <= (t); (x)++) #define per(x, s, t) for(llint x = (s); (x) >= (t); (x)--) #define reps(x, s) for(llint x = 0; (x) < (llint)(s).size(); (x)++) #define chmin(x, y) (x) = min((x), (y)) #define chmax(x, y) (x) = max((x), (y)) #define sz(x) ((ll)(x).size()) #define ceil(x, y) (((x)+(y)-1) / (y)) #define all(x) (x).begin(),(x).end() #define outl(...) dump_func(__VA_ARGS__) #define outf(x) cout << fixed << setprecision(16) << (x) << endl #define inf 1e18 using namespace std; typedef long long llint; typedef long long ll; typedef pair<ll, ll> P; struct edge{ ll to, cost; edge(){} edge(ll a, ll b){ to = a, cost = b;} }; const ll dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1}; //const ll mod = 1000000007; const ll mod = 998244353; struct mint{ ll x = 0; mint(ll y = 0){x = y; if(x < 0 || x >= mod) x = (x%mod+mod)%mod;} mint(const mint &ope) {x = ope.x;} mint operator-(){return mint(-x);} mint operator+(const mint &ope){return mint(x) += ope;} mint operator-(const mint &ope){return mint(x) -= ope;} mint operator*(const mint &ope){return mint(x) *= ope;} mint operator/(const mint &ope){return mint(x) /= ope;} mint& operator+=(const mint &ope){ x += ope.x; if(x >= mod) x -= mod; return *this; } mint& operator-=(const mint &ope){ x += mod - ope.x; if(x >= mod) x -= mod; return *this; } mint& operator*=(const mint &ope){ x *= ope.x, x %= mod; return *this; } mint& operator/=(const mint &ope){ ll n = mod-2; mint mul = ope; while(n){ if(n & 1) *this *= mul; mul *= mul; n >>= 1; } return *this; } mint inverse(){return mint(1) / *this;} bool operator ==(const mint &ope){return x == ope.x;} bool operator !=(const mint &ope){return x != ope.x;} }; mint modpow(mint a, ll n){ if(n == 0) return mint(1); if(n % 2) return a * modpow(a, n-1); else return modpow(a*a, n/2); } istream& operator >>(istream &is, mint &ope){ ll t; is >> t, ope.x = t; return is; } ostream& operator <<(ostream &os, mint &ope){return os << ope.x;} ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;} vector<mint> fact, fact_inv; void make_fact(int n){ fact.resize(n+1), fact_inv.resize(n+1); fact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i); fact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1); } mint comb(ll n, ll k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];} mint perm(ll n, ll k){ return comb(n, k) * fact[k]; } vector<int> prime; void make_prime(int n){ prime.resize(n+1); rep(i, 2, n){ if(prime[i]) continue; for(int j = i; j <= n; j+=i) prime[j] = i; } } bool exceed(ll x, ll y, ll m){return x >= m / y + 1;} void mark(){ cout << "*" << endl; } void yes(){ cout << "YES" << endl; } void no(){ cout << "NO" << endl; } ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;} ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);} ll lcm(ll a, ll b){return a/gcd(a, b)*b;} ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;} ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;} string lltos(ll x){string ret; for(;x;x/=10) ret += x % 10 + '0'; reverse(ret.begin(), ret.end()); return ret;} ll stoll(string &s){ll ret = 0; for(auto c : s) ret *= 10, ret += c - '0'; return ret;} template<typename T> void uniq(T &vec){ sort(vec.begin(), vec.end()); vec.erase(unique(vec.begin(), vec.end()), vec.end());} template<class S, class T> pair<S, T>& operator+=(pair<S,T> &s, const pair<S,T> &t){ s.first += t.first, s.second += t.second; return s; } template<class S, class T> pair<S, T>& operator-=(pair<S,T> &s, const pair<S,T> &t){ s.first -= t.first, s.second -= t.second; return s; } template<class S, class T> pair<S, T> operator+(const pair<S,T> &s, const pair<S,T> &t){ return pair<S,T>(s.first+t.first, s.second+t.second); } template<class S, class T> pair<S, T> operator-(const pair<S,T> &s, const pair<S,T> &t){ return pair<S,T>(s.first-t.first, s.second-t.second); } template<typename T> ostream& operator << (ostream& os, vector<T>& vec) { for(int i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? "" : " "); return os; } template<typename T> ostream& operator << (ostream& os, deque<T>& deq) { for(int i = 0; i < deq.size(); i++) os << deq[i] << (i + 1 == deq.size() ? "" : " "); return os; } template<typename T, typename U> ostream& operator << (ostream& os, pair<T, U>& pair_var) { os << "(" << pair_var.first << ", " << pair_var.second << ")"; return os; } template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U>& pair_var) { os << "(" << pair_var.first << ", " << pair_var.second << ")"; return os; } template<typename T, typename U> ostream& operator << (ostream& os, map<T, U>& map_var) { for(typename map<T, U>::iterator itr = map_var.begin(); itr != map_var.end(); itr++) { os << "(" << itr->first << ", " << itr->second << ")"; itr++; if(itr != map_var.end()) os << ","; itr--; } return os; } template<typename T> ostream& operator << (ostream& os, set<T>& set_var) { for(typename set<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) { os << *itr; ++itr; if(itr != set_var.end()) os << " "; itr--; } return os; } template<typename T> ostream& operator << (ostream& os, multiset<T>& set_var) { for(typename multiset<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) { os << *itr; ++itr; if(itr != set_var.end()) os << " "; itr--; } return os; } template<typename T> void outa(T a[], ll s, ll t){for(ll i = s; i <= t; i++){ cout << a[i]; if(i < t) cout << " ";}cout << endl;} void dump_func(){cout << endl;} template <class Head, class... Tail> void dump_func(Head &&head, Tail &&... tail) { cout << head; if(sizeof...(Tail) > 0) cout << " "; dump_func(std::move(tail)...); } struct MinCostFlow{ typedef llint CAP; typedef llint COST; //double�ɂ����Ƃ���dijkstra�ł̌덷�ɑΏ� struct edge{ int to, rev; CAP cap; COST cost; edge(){} edge(int a, CAP b, COST c, int d){ to = a, cap = b, cost = c, rev = d; } }; int n; vector<vector<edge> > G; vector<COST> dist; vector<int> prevv, preve; vector<COST> h; MinCostFlow(){} MinCostFlow(int n){ this->n = n; G.resize(n+1); dist.resize(n+1); prevv.resize(n+1); preve.resize(n+1); h.resize(n+1); } void BellmanFord(int s) { for(int i = 0; i <= n; i++) dist[i] = inf; dist[s] = 0, prevv[s] = -1; bool update = true; while(update){ update = false; for(int i = 0; i <= n; i++){ for(int j = 0; j < G[i].size(); j++){ if(G[i][j].cap == 0) continue; if(dist[G[i][j].to] > dist[i] + G[i][j].cost){ dist[G[i][j].to] = dist[i] + G[i][j].cost; prevv[G[i][j].to] = i; preve[G[i][j].to] = j; update = true; } } } } } void Dijkstra(int s) { for(int i = 0; i <= n; i++) dist[i] = inf; dist[s] = 0, prevv[s] = -1; typedef pair<COST, int> P; priority_queue< P, vector<P>, greater<P> > Q; Q.push( make_pair(0, s) ); int v; COST d; while(Q.size()){ d = Q.top().first; v = Q.top().second; Q.pop(); if(dist[v] < d) continue; for(int i = 0; i < G[v].size(); i++){ if(G[v][i].cap == 0) continue; int u = G[v][i].to; COST c = h[v] - h[u] + G[v][i].cost; if(dist[u] > d + c + 1e-9){ //COST��double�̂Ƃ��͌덷�ɑΏ� dist[u] = d + c; prevv[u] = v; preve[u] = i; Q.push( P(dist[u], u) ); } } } } void add_edge(int from, int to, CAP cap, COST cost) { G[from].push_back( edge(to, cap, cost, G[to].size()) ); G[to].push_back( edge(from, 0, -cost, G[from].size()-1) ); } COST calc(int s, int t, CAP f) { //BellmanFord(s); Dijkstra(s); for(int i = 0; i <= n; i++) h[i] = dist[i]; COST ret = 0; while(f > 0){ Dijkstra(s); if(dist[t] >= inf) break; int p = t; CAP flow = f; while(prevv[p] != -1){ flow = min(flow, G[prevv[p]][preve[p]].cap); p = prevv[p]; } p = t; while(prevv[p] != -1){ G[prevv[p]][preve[p]].cap -= flow; G[p][G[prevv[p]][preve[p]].rev].cap += flow; p = prevv[p]; } f -= flow; ret += (dist[t] + h[t] - h[s]) * flow; for(int i = 0; i <= n; i++) h[i] += dist[i]; //�I�[�o�[�t���[�ɒ���(?) } if(f > 0) return -1; return ret; } }; ll n, k; ll a[50005]; MinCostFlow mcf(100005); ll X = 2e9; int main(void) { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> k; ll S = 2*n+1, T = S+1; rep(i, 1, n-1) mcf.add_edge(i, i+1, inf, X); rep(i, 1, n) mcf.add_edge(i, n+i, inf, 0), mcf.add_edge(n+i, i, inf, 0); mcf.add_edge(S, 1, inf, 0), mcf.add_edge(n, T, inf, X); ll b, m; rep(i, 1, n){ cin >> a[i] >> m; rep(j, 1, m){ cin >> b; if(a[b] < a[i]) mcf.add_edge(b, i, 1, (i-b)*X-(a[i]-a[b])); } } outl(k*X*n-mcf.calc(S, T, k)); return 0; }