結果

問題 No.1676 Coin Trade (Single)
ユーザー leaf_1415leaf_1415
提出日時 2021-09-10 22:59:20
言語 C++11
(gcc 11.4.0)
結果
RE  
実行時間 -
コード長 9,320 bytes
コンパイル時間 1,213 ms
コンパイル使用メモリ 117,916 KB
実行使用メモリ 24,316 KB
最終ジャッジ日時 2024-06-12 03:03:10
合計ジャッジ時間 4,608 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4 ms
7,884 KB
testcase_01 AC 5 ms
7,808 KB
testcase_02 AC 6 ms
7,808 KB
testcase_03 RE -
testcase_04 RE -
testcase_05 AC 125 ms
24,168 KB
testcase_06 AC 126 ms
24,316 KB
testcase_07 AC 99 ms
21,204 KB
testcase_08 AC 52 ms
15,224 KB
testcase_09 AC 93 ms
20,984 KB
testcase_10 AC 95 ms
21,664 KB
testcase_11 RE -
testcase_12 AC 71 ms
18,232 KB
testcase_13 AC 5 ms
7,808 KB
testcase_14 AC 5 ms
7,808 KB
testcase_15 AC 6 ms
7,808 KB
testcase_16 AC 6 ms
7,936 KB
testcase_17 AC 6 ms
7,808 KB
testcase_18 AC 5 ms
7,808 KB
testcase_19 AC 5 ms
7,936 KB
testcase_20 AC 4 ms
7,856 KB
testcase_21 AC 5 ms
7,808 KB
testcase_22 AC 4 ms
7,808 KB
testcase_23 AC 4 ms
7,776 KB
testcase_24 AC 4 ms
7,808 KB
testcase_25 AC 5 ms
7,808 KB
testcase_26 AC 5 ms
7,804 KB
testcase_27 AC 5 ms
7,936 KB
testcase_28 AC 4 ms
7,808 KB
testcase_29 AC 3 ms
7,936 KB
testcase_30 AC 5 ms
7,808 KB
testcase_31 AC 4 ms
7,808 KB
testcase_32 AC 4 ms
7,804 KB
testcase_33 RE -
testcase_34 RE -
testcase_35 RE -
testcase_36 RE -
testcase_37 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstdlib>
#include <cassert>
#include <vector>
#include <list>
#include <stack>
#include <queue>
#include <deque>
#include <map>
#include <set>
#include <bitset>
#include <string>
#include <algorithm>
#include <utility>
#include <complex>
#include <unordered_set>
#include <unordered_map>
#define rep(x, s, t) for(llint x = (s); (x) <= (t); (x)++)
#define per(x, s, t) for(llint x = (s); (x) >= (t); (x)--)
#define reps(x, s) for(llint x = 0; (x) < (llint)(s).size(); (x)++)
#define chmin(x, y) (x) = min((x), (y))
#define chmax(x, y) (x) = max((x), (y))
#define sz(x) ((ll)(x).size())
#define ceil(x, y) (((x)+(y)-1) / (y))
#define all(x) (x).begin(),(x).end()
#define outl(...) dump_func(__VA_ARGS__)
#define outf(x) cout << fixed << setprecision(16) << (x) << endl
#define inf 1e18

using namespace std;

typedef long long llint;
typedef long long ll;
typedef pair<ll, ll> P;

struct edge{
	ll to, cost;
	edge(){}
	edge(ll a, ll b){ to = a, cost = b;}
};
const ll dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1};

//const ll mod = 1000000007;
const ll mod = 998244353;

struct mint{
	ll x = 0;
	mint(ll y = 0){x = y; if(x < 0 || x >= mod) x = (x%mod+mod)%mod;}
	mint(const mint &ope) {x = ope.x;}

	mint operator-(){return mint(-x);}
	mint operator+(const mint &ope){return mint(x) += ope;}
	mint operator-(const mint &ope){return mint(x) -= ope;}
	mint operator*(const mint &ope){return mint(x) *= ope;}
	mint operator/(const mint &ope){return mint(x) /= ope;}
	mint& operator+=(const mint &ope){
		x += ope.x;
		if(x >= mod) x -= mod;
		return *this;
	}
	mint& operator-=(const mint &ope){
		x += mod - ope.x;
		if(x >= mod) x -= mod;
		return *this;
	}
	mint& operator*=(const mint &ope){
		x *= ope.x, x %= mod;
		return *this;
	}
	mint& operator/=(const mint &ope){
		ll n = mod-2; mint mul = ope;
		while(n){
			if(n & 1) *this *= mul;
			mul *= mul;
			n >>= 1;
		}
		return *this;
	}
	mint inverse(){return mint(1) / *this;}
	bool operator ==(const mint &ope){return x == ope.x;}
	bool operator !=(const mint &ope){return x != ope.x;}
};
mint modpow(mint a, ll n){
	if(n == 0) return mint(1);
	if(n % 2) return a * modpow(a, n-1);
	else return modpow(a*a, n/2);
}
istream& operator >>(istream &is, mint &ope){
	ll t; is >> t, ope.x = t;
	return is;
}
ostream& operator <<(ostream &os, mint &ope){return os << ope.x;}
ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;}

vector<mint> fact, fact_inv;
void make_fact(int n){
	fact.resize(n+1), fact_inv.resize(n+1);
	fact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i);
	fact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1);
}
mint comb(ll n, ll k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];}
mint perm(ll n, ll k){ return comb(n, k) * fact[k]; }

vector<int> prime;
void make_prime(int n){
	prime.resize(n+1);
	rep(i, 2, n){
		if(prime[i]) continue;
		for(int j = i; j <= n; j+=i) prime[j] = i;
	}
}

bool exceed(ll x, ll y, ll m){return x >= m / y + 1;}
void mark(){ cout << "*" << endl; }
void yes(){ cout << "YES" << endl; }
void no(){ cout << "NO" << endl; }
ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;}
ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);}
ll lcm(ll a, ll b){return a/gcd(a, b)*b;}
ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;}
ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;}
string lltos(ll x){string ret; for(;x;x/=10) ret += x % 10 + '0'; reverse(ret.begin(), ret.end()); return ret;}
ll stoll(string &s){ll ret = 0; for(auto c : s) ret *= 10, ret += c - '0'; return ret;}
template<typename T>
void uniq(T &vec){ sort(vec.begin(), vec.end()); vec.erase(unique(vec.begin(), vec.end()), vec.end());}

template<class S, class T> pair<S, T>& operator+=(pair<S,T> &s, const pair<S,T> &t){
	s.first += t.first, s.second += t.second;
	return s;
}
template<class S, class T> pair<S, T>& operator-=(pair<S,T> &s, const pair<S,T> &t){
	s.first -= t.first, s.second -= t.second;
	return s;
}
template<class S, class T> pair<S, T> operator+(const pair<S,T> &s, const pair<S,T> &t){
	return pair<S,T>(s.first+t.first, s.second+t.second);
}
template<class S, class T> pair<S, T> operator-(const pair<S,T> &s, const pair<S,T> &t){
	return pair<S,T>(s.first-t.first, s.second-t.second);
}
template<typename T>
ostream& operator << (ostream& os, vector<T>& vec) {
	for(int i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? "" : " ");
	return os;
}
template<typename T>
ostream& operator << (ostream& os, deque<T>& deq) {
	for(int i = 0; i < deq.size(); i++) os << deq[i] << (i + 1 == deq.size() ? "" : " ");
	return os;
}
template<typename T, typename U>
ostream& operator << (ostream& os, pair<T, U>& pair_var) {
	os << "(" << pair_var.first << ", " << pair_var.second << ")";
	return os;
}
template<typename T, typename U>
ostream& operator << (ostream& os, const pair<T, U>& pair_var) {
	os << "(" << pair_var.first << ", " << pair_var.second << ")";
	return os;
}
template<typename T, typename U>
ostream& operator << (ostream& os, map<T, U>& map_var) {
	for(typename map<T, U>::iterator itr = map_var.begin(); itr != map_var.end(); itr++) {
		os << "(" << itr->first << ", " << itr->second << ")";
		itr++; if(itr != map_var.end()) os << ","; itr--;
	}
	return os;
}
template<typename T>
ostream& operator << (ostream& os, set<T>& set_var) {
	for(typename set<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) {
		os << *itr; ++itr; if(itr != set_var.end()) os << " "; itr--;
	}
	return os;
}
template<typename T>
ostream& operator << (ostream& os, multiset<T>& set_var) {
	for(typename multiset<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) {
		os << *itr; ++itr; if(itr != set_var.end()) os << " "; itr--;
	}
	return os;
}
template<typename T>
void outa(T a[], ll s, ll t){for(ll i = s; i <= t; i++){ cout << a[i]; if(i < t) cout << " ";}cout << endl;}
void dump_func(){cout << endl;}
template <class Head, class... Tail>
void dump_func(Head &&head, Tail &&... tail) {
	cout << head;
	if(sizeof...(Tail) > 0) cout << " ";
	dump_func(std::move(tail)...);
}

struct MinCostFlow{
	typedef llint CAP;
	typedef llint COST; //double�ɂ����Ƃ���dijkstra�ł̌덷�ɑΏ�

	struct edge{
		int to, rev;
		CAP cap;
		COST cost;
		edge(){}
		edge(int a, CAP b, COST c, int d){
			to = a, cap = b, cost = c, rev = d;
		}
	};
	int n;
	vector<vector<edge> > G;
	vector<COST> dist;
	vector<int> prevv, preve;
	vector<COST> h;

	MinCostFlow(){}
	MinCostFlow(int n){
		this->n = n;
		G.resize(n+1);
		dist.resize(n+1);
		prevv.resize(n+1);
		preve.resize(n+1);
		h.resize(n+1);
	}
	void BellmanFord(int s)
	{
		for(int i = 0; i <= n; i++) dist[i] = inf;
		dist[s] = 0, prevv[s] = -1;

		bool update = true;
		while(update){
			update = false;
			for(int i = 0; i <= n; i++){
				for(int j = 0; j < G[i].size(); j++){
					if(G[i][j].cap == 0) continue;
					if(dist[G[i][j].to] > dist[i] + G[i][j].cost){
						dist[G[i][j].to] = dist[i] + G[i][j].cost;
						prevv[G[i][j].to] = i;
						preve[G[i][j].to] = j;
						update = true;
					}
				}
			}
		}
	}
	void Dijkstra(int s)
	{
		for(int i = 0; i <= n; i++) dist[i] = inf;
		dist[s] = 0, prevv[s] = -1;

		typedef pair<COST, int> P;
		priority_queue< P, vector<P>, greater<P> > Q;
		Q.push( make_pair(0, s) );

		int v; COST d;
		while(Q.size()){
			d = Q.top().first;
			v = Q.top().second;
			Q.pop();
			if(dist[v] < d) continue;
			for(int i = 0; i < G[v].size(); i++){
				if(G[v][i].cap == 0) continue;
				int u = G[v][i].to; COST c = h[v] - h[u] + G[v][i].cost;
				if(dist[u] > d + c + 1e-9){ //COST��double�̂Ƃ��͌덷�ɑΏ�
					dist[u] = d + c;
					prevv[u] = v;
					preve[u] = i;
					Q.push( P(dist[u], u) );
				}
			}
		}
	}
	void add_edge(int from, int to, CAP cap, COST cost)
	{
		G[from].push_back( edge(to, cap, cost, G[to].size()) );
		G[to].push_back( edge(from, 0, -cost, G[from].size()-1) );
	}
	COST calc(int s, int t, CAP f)
	{
		//BellmanFord(s);
		Dijkstra(s);
		for(int i = 0; i <= n; i++) h[i] = dist[i];

		COST ret = 0;
		while(f > 0){
			Dijkstra(s);
			if(dist[t] >= inf) break;

			int p = t; CAP flow = f;
			while(prevv[p] != -1){
				flow = min(flow, G[prevv[p]][preve[p]].cap);
				p = prevv[p];
			}

			p = t;
			while(prevv[p] != -1){
				G[prevv[p]][preve[p]].cap -= flow;
				G[p][G[prevv[p]][preve[p]].rev].cap += flow;
				p = prevv[p];
			}
			f -= flow;
			ret += (dist[t] + h[t] - h[s]) * flow;

			for(int i = 0; i <= n; i++) h[i] += dist[i]; //�I�[�o�[�t���[�ɒ���(?)
		}
		if(f > 0) return -1;
		return ret;
	}
};

ll n, k;
ll a[50005];
MinCostFlow mcf(100005);
ll X = 2e9;

int main(void)
{
	ios::sync_with_stdio(0);
	cin.tie(0);

	cin >> n >> k;
	ll S = 2*n+1, T = S+1;

	rep(i, 1, n-1) mcf.add_edge(i, i+1, inf, X);
	rep(i, 1, n) mcf.add_edge(i, n+i, inf, 0), mcf.add_edge(n+i, i, inf, 0);
	mcf.add_edge(S, 1, inf, 0), mcf.add_edge(n, T, inf, X);

	ll b, m;
	rep(i, 1, n){
		cin >> a[i] >> m;
		rep(j, 1, m){
			cin >> b;
			if(a[b] < a[i]) mcf.add_edge(b, i, 1, (i-b)*X-(a[i]-a[b]));
		}
	}
	outl(k*X*n-mcf.calc(S, T, k));

	return 0;
}
0