結果
問題 | No.1677 mæx |
ユーザー | satanic |
提出日時 | 2021-09-10 23:11:49 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 23 ms / 2,000 ms |
コード長 | 14,181 bytes |
コンパイル時間 | 1,756 ms |
コンパイル使用メモリ | 144,532 KB |
実行使用メモリ | 11,616 KB |
最終ジャッジ日時 | 2024-06-12 03:40:30 |
合計ジャッジ時間 | 3,091 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 14 ms
7,416 KB |
testcase_01 | AC | 13 ms
7,296 KB |
testcase_02 | AC | 13 ms
7,380 KB |
testcase_03 | AC | 14 ms
7,296 KB |
testcase_04 | AC | 21 ms
11,008 KB |
testcase_05 | AC | 20 ms
10,984 KB |
testcase_06 | AC | 22 ms
11,100 KB |
testcase_07 | AC | 21 ms
11,008 KB |
testcase_08 | AC | 22 ms
11,008 KB |
testcase_09 | AC | 20 ms
11,136 KB |
testcase_10 | AC | 21 ms
11,136 KB |
testcase_11 | AC | 22 ms
11,008 KB |
testcase_12 | AC | 22 ms
11,104 KB |
testcase_13 | AC | 21 ms
10,996 KB |
testcase_14 | AC | 21 ms
11,108 KB |
testcase_15 | AC | 21 ms
11,008 KB |
testcase_16 | AC | 21 ms
11,088 KB |
testcase_17 | AC | 23 ms
11,136 KB |
testcase_18 | AC | 21 ms
11,136 KB |
testcase_19 | AC | 14 ms
7,352 KB |
testcase_20 | AC | 14 ms
7,260 KB |
testcase_21 | AC | 21 ms
11,616 KB |
ソースコード
// // S i r o t a n w a t c h e s o v e r y o u . // // ...Jggg+J+JJJg@NQmgJa....., // ....gH@@@@HHB""""7"YYYYHMMMMMMM@@@@@@@Hma,. // ...JH@@MMHY"! ? __""YH@@@@N&... // ..JH@@HY"~ _TW@@@Mme. // .Jg@@#"= _TTM@@N.. // .Jg@@MY! ?T@@@h,. // .-@@@B! (TM@@@L // .(H@MY ?W@@@+ // .W@@@ .T@@@[ // .d@@M! .T@@N, // .d@M@' -W@@o. // (@@M\ ?M@N, // -d@M% .., .., j@@b // d@@M= TM9 ?MD W@@[ // .H@M: .W@H, // H@Ht ,@@# // (@@M~ .@@h. // .@@M% ..gmHHJ. .JdHga. .H@@e // j@@#_ .@@@@@@@b J@@@@@@@h. .H@@\ // d@@@ .4@@@@@@MF (@@@@@@@@ H@@b // d@@[ ?"BMY"= .d@@@@H, ?TWHHY"! d@@e // J@@b .JJJ-.., ,@@@@@@M% ......... -@@@M. // ?@@M\ ?YHHM@@@@b .. .W@@HP X@@HMWY"= d@@@# // ,@@@L. ?H@Ng&+gd@@#H@@NHaJ+gH@[ J@@@] // X@@@[ ...... ?"YYYYY"" ?"YHHHB"^ ..... (@@@# // WH@N+. .W@@@@MHB= .TWH@M@Hmc .H@@M~ // .H@@@@N, _!~ .d@@@N, // .J@@#T@@@N, .d@@@@@@@b. // (@@@@! .T@@@n, .(H@@@H>.W@@@x // (@@@F 4@@@@MaJ. .d@@@@Y77 4@@@r //.H@@P ?TM@@@@N... .-JH@HMY= d@@N, //(@@@F ?"WM@@@MQa-,. .(J(JN@@M#" Z@@@L // d@@H, (M@@@@@@@Ng&maJ.... .. ...J.J+W@@@@@@HY! .dH@b // ?M@@@N&. ..(JW@@@MM"?7""TYHMH@@HH@@@@@HHHgkHagHa(mggdmmagH@H@@Q@@HMMMHY"7!TMM@@@HaJ,. ..H@@@M^ // ?"W@@@@MN@@@@@H@@MMY" _???!"= ?WMMBYYTMH=7""Y@""?"~^ _"YM@@@@@@@@MH@@@@@#"^ // ?77WMMMYB""! _7"WWMMMY"7= // need #include <iostream> #include <algorithm> // data structure #include <bitset> #include <map> #include <queue> #include <set> #include <stack> #include <string> #include <cstring> #include <utility> #include <vector> #include <complex> //#include <deque> #include <valarray> #include <unordered_map> #include <unordered_set> #include <array> // etc #include <cassert> #include <cmath> #include <functional> #include <iomanip> #include <chrono> #include <random> #include <numeric> #include <fstream> //std::ifstream ifs("d.in"); //auto& scan_in = ifs; auto& scan_in = std::cin; auto& scan_out = std::cout; // input #define INIT std::ios::sync_with_stdio(false);std::cin.tie(0); #define VAR(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__); template<typename T> void MACRO_VAR_Scan(T& t) { scan_in >> t; } template<typename First, typename...Rest>void MACRO_VAR_Scan(First& first, Rest& ...rest) { scan_in >> first; MACRO_VAR_Scan(rest...); } #define VEC_ROW(type, n, ...)std::vector<type> __VA_ARGS__;MACRO_VEC_ROW_Init(n, __VA_ARGS__); for(int w_=0; w_<n; ++w_){MACRO_VEC_ROW_Scan(w_, __VA_ARGS__);} template<typename T> void MACRO_VEC_ROW_Init(int n, T& t) { t.resize(n); } template<typename First, typename...Rest>void MACRO_VEC_ROW_Init(int n, First& first, Rest& ...rest) { first.resize(n); MACRO_VEC_ROW_Init(n, rest...); } template<typename T> void MACRO_VEC_ROW_Scan(int p, T& t) { scan_in >> t[p]; } template<typename First, typename...Rest>void MACRO_VEC_ROW_Scan(int p, First& first, Rest& ...rest) { scan_in >> first[p]; MACRO_VEC_ROW_Scan(p, rest...); } #define VEC(type, c, n) std::vector<type> c(n);for(auto& i:c)scan_in>>i; #define MAT(type, c, m, n) std::vector<std::vector<type>> c(m, std::vector<type>(n));for(auto& R:c)for(auto& w:R)scan_in>>w; // output template<typename T>void MACRO_OUT(const T t) { scan_out << t; } template<typename First, typename...Rest>void MACRO_OUT(const First first, const Rest...rest) { scan_out << first << ' '; MACRO_OUT(rest...); } #define OUT(...) MACRO_OUT(__VA_ARGS__); #define FOUT(n, dist) scan_out<<std::fixed<<std::setprecision(n)<<(dist); #define SOUT(n, c, dist) scan_out<<std::setw(n)<<std::setfill(c)<<(dist); #define VOUT(v) for(size_t i = 0; i < v.size(); ++i) {OUT(v[i]);if(i+1<v.size()){SP}} #define EOUT(...) do{ OUT(__VA_ARGS__)BR; exit(0); }while(0); #define SP scan_out<<' '; #define TAB scan_out<<'\t'; #define BR scan_out<<'\n'; #define SPBR(w, n) scan_out<<(w + 1 == n ? '\n' : ' '); #define ENDL scan_out<<std::endl; #define FLUSH scan_out<<std::flush; #define SHOW(dist) {std::cerr << #dist << "\t: " << (dist) << '\n';} // utility #define ALL(a) (a).begin(),(a).end() #define FOR(w, a, n) for(int w=(a);w<(n);++w) #define REP(w, n) FOR(w, 0, n) #define RFOR(w, a, n) for(int w=(n)-1;w>=(a);--w) #define RREP(w, n) RFOR(w, 0, n) template<class S, class T, class U> bool IN(S a, T x, U b) { return a <= x && x < b; } template<class T> inline bool CHMAX(T& a, const T b) { if (a < b) { a = b; return true; } return false; } template<class T> inline bool CHMIN(T& a, const T b) { if (a > b) { a = b; return true; } return false; } // test template<class T> using V = std::vector<T>; template<class T> using VV = V<V<T>>; // //std::ostream& operator<<(std::ostream& os, const __int128& t) { // if (t >= 1000000000000000000) { // os << (long long)(t / 1000000000000000000) << (long long)(t % 1000000000000000000); // } // else { // os << (long long)t; // } // return os; //} template<typename S, typename T> std::ostream& operator<<(std::ostream& os, const std::pair<S, T>& p) { os << '(' << p.first << ',' << p.second << ')'; return os; } template<typename T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) { os << '{'; for (size_t i = 0; i < v.size(); ++i) os << v[i] << ((i + 1 < v.size()) ? ',' : '}'); return os; } template<typename T> std::ostream& operator<<(std::ostream& os, const std::set<T>& v) { os << '{'; for (auto it = v.cbegin(); it != v.cend();) { os << *it << (++it == v.cend() ? '}' : ','); } return os; } template<typename S, typename T> std::ostream& operator<<(std::ostream& os, const std::map<S, T>& m) { os << '{'; for (auto it = m.cbegin(); it != m.cend();) { os << it->first << ':' << it->second; ++it; os << (it != m.cend() ? ',' : '}'); } return os; } template<typename T> std::ostream& operator<<(std::ostream& os, std::queue<T> q) { os << '<'; while (!q.empty()) { os << q.front(); q.pop(); os << (q.empty() ? '<' : ','); } return os; } template<typename T> std::ostream& operator<<(std::ostream& os, std::stack<T> q) { os << '>'; while (!q.empty()) { os << q.top(); q.pop(); os << (q.empty() ? ']' : ','); } return os; } namespace std { template<typename S, typename T> class numeric_limits<pair<S, T>> { public: static constexpr pair<S, T> max() noexcept { return { numeric_limits<S>::max(), numeric_limits<T>::max() }; } static constexpr pair<S, T> lowest() noexcept { return { numeric_limits<S>::lowest(), numeric_limits<T>::lowest() }; } }; } // type/const using i64 = long long; using u64 = unsigned long long; using ll = long long; using ull = unsigned long long; using ld = long double; using PAIR = std::pair<int, int>; constexpr int INFINT = (1 << 30) - 1; // 1.07x10^ 9 constexpr int INFINT_LIM = (1LL << 31) - 1; // 2.15x10^ 9 constexpr long long INFLL = 1LL << 60; // 1.15x10^18 constexpr long long INFLL_LIM = (1LL << 62) - 1 + (1LL << 62); // 9.22x10^18 constexpr double EPS = 1e-12; constexpr int MOD = 998244353; constexpr double PI = 3.141592653589793238462643383279; template<class T, size_t N> void FILL(T(&a)[N], const T& val) { for (auto& x : a) x = val; } template<class ARY, size_t N, size_t M, class T> void FILL(ARY(&a)[N][M], const T& val) { for (auto& b : a) FILL(b, val); } template<class T> void FILL(std::vector<T>& a, const T& val) { for (auto& x : a) x = val; } template<class ARY, class T> void FILL(std::vector<std::vector<ARY>>& a, const T& val) { for (auto& b : a) FILL(b, val); } // ------------>8------------------------>8------------ class ModInt { friend std::istream& operator>>(std::istream& is, ModInt& obj); private: inline ModInt& normUpper() { if (val >= MOD) val -= MOD; return *this; } inline ModInt& normLower() { if (val < 0) val += MOD; return *this; } inline ModInt& norm() { return normUpper(), normLower(); } public: constexpr static int numOfPrecalc = 1000006; static ModInt inv[numOfPrecalc]; int val; ModInt() : val(0) {} ModInt(int n) : val(n) { if (n >= MOD || n <= -MOD) n %= MOD; norm(); } ModInt(long long n) : ModInt((int)(n% MOD)) {} ModInt& operator=(const ModInt& r) { val = r.val; return *this; } ModInt operator+() const { return *this; } ModInt operator-() const { return ModInt(MOD - val); } ModInt& operator+=(const ModInt& r) { val += r.val; return normUpper(); } ModInt& operator-=(const ModInt& r) { val -= r.val; return normLower(); } ModInt& operator*=(const ModInt& r) { val = (long long)val * r.val % MOD; return *this; } ModInt& operator/=(ModInt r) { return *this *= (r.val < numOfPrecalc) ? inv[r.val] : (r ^= MOD - 2); } ModInt& operator^=(int p) { ModInt t(*this); *this = 1; for (; p; p >>= 1, t *= t) if (p & 1) *this *= t; return *this; } const ModInt operator+(const ModInt& r) const { return ModInt(*this) += r; } const ModInt operator-(const ModInt& r) const { return ModInt(*this) -= r; } const ModInt operator*(const ModInt& r) const { return ModInt(*this) *= r; } const ModInt operator/(const ModInt& r) const { return ModInt(*this) /= r; } const ModInt operator^(int p) const { return ModInt(*this) ^= p; } }; const ModInt operator+(long long l, const ModInt& r) { return ModInt(l) += r; } const ModInt operator-(long long l, const ModInt& r) { return ModInt(l) -= r; } const ModInt operator*(long long l, const ModInt& r) { return ModInt(l) *= r; } const ModInt operator/(long long l, const ModInt& r) { return ModInt(l) /= r; } const ModInt operator+(int l, const ModInt& r) { return ModInt(l) += r; } const ModInt operator-(int l, const ModInt& r) { return ModInt(l) -= r; } const ModInt operator*(int l, const ModInt& r) { return ModInt(l) *= r; } const ModInt operator/(int l, const ModInt& r) { return ModInt(l) /= r; } std::ostream& operator<<(std::ostream& os, const ModInt& obj) { return os << obj.val; } /* friend */ std::istream& operator>>(std::istream& is, ModInt& obj) { is >> obj.val; obj.norm(); return is; } ModInt ModInt::inv[ModInt::numOfPrecalc]; struct Init_ModInt { Init_ModInt() { ModInt::inv[1] = 1; for (int i = 2; i < ModInt::numOfPrecalc; ++i) ModInt::inv[i] = (MOD - MOD / i) * ModInt::inv[MOD % i]; } } _init_modint; /** ModInt **/ enum NodeType { fMAX, fMEX, fM_X, val, SIZE }; struct Node { Node* l, * r; NodeType type; ModInt dp[3]; }; Node* expr(std::string::iterator& it) { Node* node = new Node(); REP(i, 3) node->dp[i] = 0; while (*it != '$' && *it != ',' && *it != ')') { if (*it == 'm') { ++it; if (*it == 'a') { node->type = fMAX; } else if (*it == 'e') { node->type = fMEX; } else { // ? node->type = fM_X; } ++it; // x ++it; // ( ++it; node->l = expr(it); // , ++it; node->r = expr(it); // ) ++it; break; } else if (std::isdigit(*it)) { node->dp[*it - '0'] = 1; node->type = val; ++it; break; } else { // ? REP(i, 3) node->dp[i] = 1; node->type = val; ++it; } } return node; } int mex(int i, int j) { int p = 0; while (i == p || j == p) ++p; return p; } signed main() { INIT; VAR(std::string, s); VAR(int, k); s += '$'; auto it = s.begin(); Node* root = expr(it); auto rec = [&](auto&& f, Node* r) -> void { if (r->type != val) { f(f, r->l); f(f, r->r); if (r->type == fMAX) { REP(i, 3) REP(j, 3) { r->dp[std::max(i, j)] += r->l->dp[i] * r->r->dp[j]; } } else if (r->type == fMEX) { REP(i, 3) REP(j, 3) { r->dp[mex(i, j)] += r->l->dp[i] * r->r->dp[j]; } } else if (r->type == fM_X) { REP(i, 3) REP(j, 3) { r->dp[std::max(i, j)] += r->l->dp[i] * r->r->dp[j]; r->dp[mex(i, j)] += r->l->dp[i] * r->r->dp[j]; } } } }; rec(rec, root); EOUT(root->dp[k]); return 0; }