結果
| 問題 |
No.1678 Coin Trade (Multiple)
|
| コンテスト | |
| ユーザー |
rniya
|
| 提出日時 | 2021-09-11 00:35:57 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,770 ms / 5,000 ms |
| コード長 | 9,538 bytes |
| コンパイル時間 | 2,758 ms |
| コンパイル使用メモリ | 217,256 KB |
| 最終ジャッジ日時 | 2025-01-24 12:32:06 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 56 |
ソースコード
#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#pragma region Macros
typedef long long ll;
typedef __int128_t i128;
typedef unsigned int uint;
typedef unsigned long long ull;
#define ALL(x) (x).begin(), (x).end()
template <typename T> istream& operator>>(istream& is, vector<T>& v) {
for (T& x : v) is >> x;
return is;
}
template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 == (int)v.size() ? "" : " ");
}
return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) {
os << '(' << p.first << ',' << p.second << ')';
return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) {
os << '{';
for (auto itr = m.begin(); itr != m.end();) {
os << '(' << itr->first << ',' << itr->second << ')';
if (++itr != m.end()) os << ',';
}
os << '}';
return os;
}
template <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) {
os << '{';
for (auto itr = m.begin(); itr != m.end();) {
os << '(' << itr->first << ',' << itr->second << ')';
if (++itr != m.end()) os << ',';
}
os << '}';
return os;
}
template <typename T> ostream& operator<<(ostream& os, const set<T>& s) {
os << '{';
for (auto itr = s.begin(); itr != s.end();) {
os << *itr;
if (++itr != s.end()) os << ',';
}
os << '}';
return os;
}
template <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) {
os << '{';
for (auto itr = s.begin(); itr != s.end();) {
os << *itr;
if (++itr != s.end()) os << ',';
}
os << '}';
return os;
}
template <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) {
os << '{';
for (auto itr = s.begin(); itr != s.end();) {
os << *itr;
if (++itr != s.end()) os << ',';
}
os << '}';
return os;
}
template <typename T> ostream& operator<<(ostream& os, const deque<T>& v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 == (int)v.size() ? "" : " ");
}
return os;
}
template <int i, typename T> void print_tuple(ostream&, const T&) {}
template <int i, typename T, typename H, class... Args> void print_tuple(ostream& os, const T& t) {
if (i) os << ',';
os << get<i>(t);
print_tuple<i + 1, T, Args...>(os, t);
}
template <typename... Args> ostream& operator<<(ostream& os, const tuple<Args...>& t) {
os << '{';
print_tuple<0, tuple<Args...>, Args...>(os, t);
return os << '}';
}
void debug_out() { cerr << '\n'; }
template <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) {
cerr << head;
if (sizeof...(Tail) > 0) cerr << ", ";
debug_out(move(tail)...);
}
#ifdef LOCAL
#define debug(...) \
cerr << " "; \
cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n'; \
cerr << " "; \
debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif
template <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }
template <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }
int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
int botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); }
int popcount(signed t) { return __builtin_popcount(t); }
int popcount(long long t) { return __builtin_popcountll(t); }
bool ispow2(int i) { return i && (i & -i) == i; }
template <class T> T ceil(T x, T y) {
assert(y >= 1);
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <class T> T floor(T x, T y) {
assert(y >= 1);
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <class T1, class T2> inline bool chmin(T1& a, T2 b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T1, class T2> inline bool chmax(T1& a, T2 b) {
if (a < b) {
a = b;
return true;
}
return false;
}
#pragma endregion
template <typename Cap, typename Cost> struct PrimalDualonDAG {
const Cost inf = numeric_limits<Cost>::max() / 2;
struct edge {
int to;
Cap cap;
Cost cost;
int rev;
edge(int to, Cap cap, Cost cost, int rev) : to(to), cap(cap), cost(cost), rev(rev) {}
};
vector<vector<edge>> G;
vector<pair<int, int>> pos;
vector<Cost> h, dist;
vector<int> prevv, preve, indeg, ord;
PrimalDualonDAG(int n) : G(n), h(n), dist(n), prevv(n), preve(n), indeg(n, 0) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
pos.emplace_back(from, G[from].size());
G[from].emplace_back(to, cap, cost, G[to].size());
G[to].emplace_back(from, 0, -cost, G[from].size() - 1);
if (cap > 0) indeg[to]++;
return pos.size() - 1;
}
tuple<int, int, Cap, Cap, Cost> get_edge(int i) {
auto e = G[pos[i].first][pos[i].second];
auto re = G[e.to][e.rev];
return {pos[i].first, e.to, e.cap + re.cap, re.cap, e.cost};
}
vector<tuple<int, int, Cap, Cap, Cost>> edges() {
vector<tuple<int, int, Cap, Cap, Cost>> res;
for (size_t i = 0; i < pos.size(); i++) {
res.emplace_back(get_edge(i));
}
return res;
}
bool topological_sort() {
queue<int> que;
for (size_t i = 0; i < G.size(); i++) {
if (indeg[i] == 0) {
que.emplace(i);
}
}
while (!que.empty()) {
int v = que.front();
que.pop();
ord.emplace_back(v);
for (const auto& e : G[v]) {
if (e.cap > 0 && --indeg[e.to] == 0) {
que.emplace(e.to);
}
}
}
return (*max_element(indeg.begin(), indeg.end()) == 0);
}
void calc_potential(int s) {
fill(h.begin(), h.end(), inf);
h[s] = 0;
for (int& v : ord) {
if (h[v] == inf) continue;
for (const auto& e : G[v]) {
if (e.cap > 0) {
h[e.to] = min(h[e.to], h[v] + e.cost);
}
}
}
}
void dijkstra(int s) {
struct P {
Cost c;
int v;
P(Cost c, int v) : c(c), v(v) {}
bool operator<(const P& rhs) const { return c > rhs.c; }
};
priority_queue<P> pq;
fill(dist.begin(), dist.end(), inf);
dist[s] = 0;
pq.emplace(dist[s], s);
while (!pq.empty()) {
auto p = pq.top();
pq.pop();
int v = p.v;
if (dist[v] < p.c) continue;
for (size_t i = 0; i < G[v].size(); i++) {
auto& e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
pq.emplace(dist[e.to], e.to);
}
}
}
}
vector<pair<Cap, Cost>> slope(int s, int t, Cap lim) {
assert(topological_sort());
calc_potential(s);
Cap f = 0;
Cost c = 0, pre = -1;
vector<pair<Cap, Cost>> res;
res.emplace_back(f, c);
while (f < lim) {
dijkstra(s);
if (dist[t] == inf) break;
for (size_t v = 0; v < G.size(); v++) h[v] += dist[v];
Cap d = lim - f;
for (int v = t; v != s; v = prevv[v]) d = min(d, G[prevv[v]][preve[v]].cap);
for (int v = t; v != s; v = prevv[v]) {
auto& e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
f += d;
c += h[t] * d;
if (pre == h[t]) res.pop_back();
res.emplace_back(f, c);
pre = c;
}
return res;
}
Cost min_cost_flow(int s, int t, Cap f) {
auto res = slope(s, t, f).back();
return res.first == f ? res.second : -1;
}
pair<Cap, Cost> min_cost_max_flow(int s, int t) { return slope(s, t, numeric_limits<Cap>::max()).back(); }
vector<pair<Cap, Cost>> min_cost_slope(int s, int t) { return slope(s, t, numeric_limits<Cap>::max()); }
};
const int INF = 1e9;
const long long IINF = 1e18;
const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
const char dir[4] = {'D', 'R', 'U', 'L'};
const long long MOD = 1000000007;
// const long long MOD = 998244353;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N, K;
cin >> N >> K;
PrimalDualonDAG<int, long long> PD(2 * N + 1);
int s = N, t = 2 * N;
for (int i = 0; i < N; i++) {
int A, M;
cin >> A >> M;
PD.add_edge(N + i, i, K, A);
PD.add_edge(i, N + i + 1, K, -A);
PD.add_edge(N + i, N + i + 1, K, 0);
for (; M--;) {
int B;
cin >> B;
PD.add_edge(--B, i, 1, 0);
}
}
long long ans = -PD.min_cost_flow(s, t, K);
cout << ans << '\n';
return 0;
}
rniya