結果
問題 | No.1666 累乗数 |
ユーザー | vwxyz |
提出日時 | 2021-09-11 00:37:27 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,509 bytes |
コンパイル時間 | 234 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 12,416 KB |
最終ジャッジ日時 | 2024-06-12 20:20:59 |
合計ジャッジ時間 | 42,535 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 76 ms
12,160 KB |
testcase_01 | AC | 1,904 ms
12,032 KB |
testcase_02 | AC | 1,938 ms
12,032 KB |
testcase_03 | AC | 1,937 ms
12,160 KB |
testcase_04 | AC | 1,925 ms
12,160 KB |
testcase_05 | TLE | - |
testcase_06 | TLE | - |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | TLE | - |
testcase_10 | TLE | - |
testcase_11 | TLE | - |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | TLE | - |
ソースコード
import bisect import copy import decimal import fractions import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines def Bisect_Int(ok,ng,is_ok): while abs(ok-ng)>1: mid=(ok+ng)//2 if is_ok(mid): ok=mid else: ng=mid return ok class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factorize=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factorize[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factorize[p]+=1 if N<p*p: if N!=1: factorize[N]+=1 break if N<=len(self.smallest_prime_factor)-1: while N!=1: factorize[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] break else: if N!=1: factorize[N]+=1 return factorize def Divisors(self,N): assert N>0 divisors=[1] for p,e in self.Factorize(N).items(): A=[1] for _ in range(e): A.append(A[-1]*p) divisors=[i*j for i in divisors for j in A] return divisors def Is_Prime(self,N): return N==self.smallest_prime_factor[N] def Totient(self,N): for p in self.Factorize(N).keys(): N*=p-1 N//=p return N def Mebius(self,N): fact=self.Factorize(N) for e in fact.values(): if e>=2: return 0 else: if len(fact)%2==0: return 1 else: return -1 P=Prime(60) def is_ok(n): cnt=[0]*61 for b in range(2,61): a=int(n**(1/b))-2 while pow(a+1,b)<=n: a+=1 cnt[b]=a-1 for p in P.primes: for b in range(2*p,61,p): cnt[b//p]-=cnt[b] return sum(cnt)>=K-1 T=int(readline()) for _ in range(T): K=int(readline()) ans=Bisect_Int(1<<60,0,is_ok) print(ans)