結果

問題 No.1666 累乗数
ユーザー vwxyzvwxyz
提出日時 2021-09-11 00:46:08
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
AC  
実行時間 1,464 ms / 2,000 ms
コード長 3,481 bytes
コンパイル時間 276 ms
コンパイル使用メモリ 12,800 KB
実行使用メモリ 12,288 KB
最終ジャッジ日時 2024-06-12 20:57:16
合計ジャッジ時間 25,583 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 63 ms
12,032 KB
testcase_01 AC 1,123 ms
12,032 KB
testcase_02 AC 1,126 ms
12,032 KB
testcase_03 AC 1,142 ms
12,160 KB
testcase_04 AC 1,140 ms
11,904 KB
testcase_05 AC 1,374 ms
12,160 KB
testcase_06 AC 1,403 ms
12,032 KB
testcase_07 AC 1,464 ms
11,904 KB
testcase_08 AC 1,383 ms
11,904 KB
testcase_09 AC 1,203 ms
12,032 KB
testcase_10 AC 1,214 ms
12,288 KB
testcase_11 AC 1,226 ms
12,032 KB
testcase_12 AC 1,198 ms
11,904 KB
testcase_13 AC 1,322 ms
12,032 KB
testcase_14 AC 1,371 ms
12,160 KB
testcase_15 AC 1,359 ms
11,904 KB
testcase_16 AC 1,357 ms
12,032 KB
testcase_17 AC 1,250 ms
12,160 KB
testcase_18 AC 1,279 ms
11,904 KB
testcase_19 AC 1,266 ms
12,032 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines

def Bisect_Int(ok,ng,is_ok):
    while abs(ok-ng)>1:
        mid=(ok+ng)//2
        if is_ok(mid):
            ok=mid
        else:
            ng=mid
    return ok

class Prime:
    def __init__(self,N):
        assert N<=10**8
        self.smallest_prime_factor=[None]*(N+1)
        for i in range(2,N+1,2):
            self.smallest_prime_factor[i]=2
        n=int(N**.5)+1
        for p in range(3,n,2):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
                for i in range(p**2,N+1,2*p):
                    if self.smallest_prime_factor[i]==None:
                        self.smallest_prime_factor[i]=p
        for p in range(n,N+1):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
        self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]

    def Factorize(self,N):
        assert N>=1
        factorize=defaultdict(int)
        if N<=len(self.smallest_prime_factor)-1:
            while N!=1:
                factorize[self.smallest_prime_factor[N]]+=1
                N//=self.smallest_prime_factor[N]
        else:
            for p in self.primes:
                while N%p==0:
                    N//=p
                    factorize[p]+=1
                if N<p*p:
                    if N!=1:
                        factorize[N]+=1
                    break
                if N<=len(self.smallest_prime_factor)-1:
                    while N!=1:
                        factorize[self.smallest_prime_factor[N]]+=1
                        N//=self.smallest_prime_factor[N]
                    break
            else:
                if N!=1:
                    factorize[N]+=1
        return factorize

    def Divisors(self,N):
        assert N>0
        divisors=[1]
        for p,e in self.Factorize(N).items():
            A=[1]
            for _ in range(e):
                A.append(A[-1]*p)
            divisors=[i*j for i in divisors for j in A]
        return divisors

    def Is_Prime(self,N):
        return N==self.smallest_prime_factor[N]

    def Totient(self,N):
        for p in self.Factorize(N).keys():
            N*=p-1
            N//=p
        return N

    def Mebius(self,N):
        fact=self.Factorize(N)
        for e in fact.values():
            if e>=2:
                return 0
        else:
            if len(fact)%2==0:
                return 1
            else:
                return -1

P=Prime(60)
dct={}
for b in range(2,61):
    m=P.Mebius(b)
    if m:
        dct[b]=-m

def is_ok(n):
    s=0
    for b in dct:
        a=int(n**(1/b))-2
        while pow(a+1,b)<=n:
            a+=1
        s+=(a-1)*dct[b]
    return s>=K-1

T=int(readline())
for _ in range(T):
    K=int(readline())
    ans=Bisect_Int(1<<60,0,is_ok)
    print(ans)
0