結果
| 問題 |
No.1666 累乗数
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2021-09-11 00:51:53 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 762 ms / 2,000 ms |
| コード長 | 3,482 bytes |
| コンパイル時間 | 361 ms |
| コンパイル使用メモリ | 82,320 KB |
| 実行使用メモリ | 91,668 KB |
| 最終ジャッジ日時 | 2024-06-12 21:13:38 |
| 合計ジャッジ時間 | 10,152 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 19 |
ソースコード
import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
def Bisect_Int(ok,ng,is_ok):
while abs(ok-ng)>1:
mid=(ok+ng)//2
if is_ok(mid):
ok=mid
else:
ng=mid
return ok
class Prime:
def __init__(self,N):
assert N<=10**8
self.smallest_prime_factor=[None]*(N+1)
for i in range(2,N+1,2):
self.smallest_prime_factor[i]=2
n=int(N**.5)+1
for p in range(3,n,2):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
for i in range(p**2,N+1,2*p):
if self.smallest_prime_factor[i]==None:
self.smallest_prime_factor[i]=p
for p in range(n,N+1):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]
def Factorize(self,N):
assert N>=1
factorize=defaultdict(int)
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factorize[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
else:
for p in self.primes:
while N%p==0:
N//=p
factorize[p]+=1
if N<p*p:
if N!=1:
factorize[N]+=1
break
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factorize[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
break
else:
if N!=1:
factorize[N]+=1
return factorize
def Divisors(self,N):
assert N>0
divisors=[1]
for p,e in self.Factorize(N).items():
A=[1]
for _ in range(e):
A.append(A[-1]*p)
divisors=[i*j for i in divisors for j in A]
return divisors
def Is_Prime(self,N):
return N==self.smallest_prime_factor[N]
def Totient(self,N):
for p in self.Factorize(N).keys():
N*=p-1
N//=p
return N
def Mebius(self,N):
fact=self.Factorize(N)
for e in fact.values():
if e>=2:
return 0
else:
if len(fact)%2==0:
return 1
else:
return -1
P=Prime(60)
dct={}
for b in range(2,61):
m=P.Mebius(b)
if m:
dct[b]=-m
def is_ok(n):
s=0
for b in dct:
a=int(n**(1/b))-1
while pow(a+1,b)<=n:
a+=1
s+=(a-1)*dct[b]
return s>=K-1
T=int(readline())
for _ in range(T):
K=int(readline())
ans=Bisect_Int(K**2+1,0,is_ok)
print(ans)
vwxyz