結果
| 問題 |
No.1676 Coin Trade (Single)
|
| コンテスト | |
| ユーザー |
momohara
|
| 提出日時 | 2021-09-11 00:56:11 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 231 ms / 2,000 ms |
| コード長 | 5,481 bytes |
| コンパイル時間 | 3,077 ms |
| コンパイル使用メモリ | 225,012 KB |
| 最終ジャッジ日時 | 2025-01-24 12:34:27 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 35 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using P = pair<ll, ll>;
using tp = tuple<ll, ll, ll>;
template <class T>
using vec = vector<T>;
template <class T>
using vvec = vector<vec<T>>;
#define all(hoge) (hoge).begin(), (hoge).end()
#define en '\n'
#define rep(i, m, n) for(ll i = (ll)(m); i < (ll)(n); ++i)
#define rep2(i, m, n) for(ll i = (ll)(n)-1; i >= (ll)(m); --i)
#define REP(i, n) rep(i, 0, n)
#define REP2(i, n) rep2(i, 0, n)
constexpr long long INF = 1LL << 60;
constexpr int INF_INT = 1 << 25;
constexpr long long MOD = (ll)1e9 + 7;
//constexpr long long MOD = 998244353LL;
static const ld pi = 3.141592653589793L;
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
template <class T>
inline bool chmin(T &a, T b) {
if(a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T &a, T b) {
if(a < b) {
a = b;
return true;
}
return false;
}
//グラフ関連
struct Edge {
int to, rev;
ll cap;
Edge(int _to, int _rev, ll _cap) : to(_to), rev(_rev), cap(_cap) {}
};
typedef vector<Edge> Edges;
typedef vector<Edges> Graph;
void add_edge(Graph &G, int from, int to, ll cap, bool revFlag, ll revCap) {
G[from].push_back(Edge(to, (int)G[to].size(), cap));
if(revFlag)
G[to].push_back(Edge(from, (int)G[from].size() - 1, revCap));
}
template <typename CapType, typename CostType>
class MinCostFlowDAG {
public:
using Cat = CapType;
using Cot = CostType;
using pti = pair<Cot, int>;
struct edge {
int to, rev;
Cat cap;
Cot cost;
};
const int V;
const Cot inf;
vector<vector<edge>> G;
vector<Cot> h, dist;
vector<int> deg, ord, prevv, preve;
MinCostFlowDAG(const int node_size) : V(node_size), inf(numeric_limits<Cot>::max()),
G(V), h(V, inf), dist(V), deg(V, 0), prevv(V), preve(V) {}
void add_edge(const int from, const int to, const Cat cap, const Cot cost) {
if(cap == 0)
return;
G[from].push_back((edge){to, (int)G[to].size(), cap, cost});
G[to].push_back((edge){from, (int)G[from].size() - 1, 0, -cost});
++deg[to];
}
bool tsort() {
queue<int> que;
for(int i = 0; i < V; ++i) {
if(deg[i] == 0)
que.push(i);
}
while(!que.empty()) {
const int p = que.front();
que.pop();
ord.push_back(p);
for(auto &e : G[p]) {
if(e.cap > 0 && --deg[e.to] == 0)
que.push(e.to);
}
}
return (*max_element(deg.begin(), deg.end()) == 0);
}
void calc_potential(const int s) {
h[s] = 0;
for(const int v : ord) {
if(h[v] == inf)
continue;
for(const edge &e : G[v]) {
if(e.cap > 0)
h[e.to] = min(h[e.to], h[v] + e.cost);
}
}
}
void Dijkstra(const int s) {
priority_queue<pti, vector<pti>, greater<pti>> que;
fill(dist.begin(), dist.end(), inf);
dist[s] = 0;
que.push(pti(0, s));
while(!que.empty()) {
pti p = que.top();
que.pop();
const int v = p.second;
if(dist[v] < p.first)
continue;
for(int i = 0; i < (int)G[v].size(); ++i) {
edge &e = G[v][i];
if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v, preve[e.to] = i;
que.push(pti(dist[e.to], e.to));
}
}
}
}
void update(const int s, const int t, Cat &f, Cot &res) {
for(int i = 0; i < V; i++) {
if(dist[i] != inf)
h[i] += dist[i];
}
Cat d = f;
for(int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += h[t] * d;
for(int v = t; v != s; v = prevv[v]) {
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
Cot solve(const int s, const int t, Cat f) {
if(!tsort())
assert(false); // not DAG
calc_potential(s);
Cot res = 0;
while(f > 0) {
Dijkstra(s);
if(dist[t] == inf)
return -inf;
update(s, t, f, res);
}
return res;
}
};
void solve() {
ll n, k;
cin >> n >> k;
MinCostFlowDAG<ll, ll> g(n * 2 + 2);
int s = n * 2;
int t = n * 2 + 1;
REP(i, n) {
ll a, m;
cin >> a >> m;
g.add_edge(i, i + n, k, a);
REP(j, m) {
ll b;
cin >> b;
b--;
g.add_edge(b + n, i, 1, -a);
}
if(i != n - 1)
g.add_edge(i, i + 1, k, 0);
}
g.add_edge(s, 0, k, 0);
g.add_edge(n - 1, t, k, 0);
cout << -g.solve(s, t, k) << en;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
//cout << fixed << setprecision(10);
// ll t;
// cin >> t;
// REP(i, t - 1) {
// solve();
// }
solve();
return 0;
}
momohara