結果
| 問題 |
No.1288 yuki collection
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2021-09-11 01:46:48 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 416 ms / 5,000 ms |
| コード長 | 13,287 bytes |
| コンパイル時間 | 1,730 ms |
| コンパイル使用メモリ | 105,972 KB |
| 最終ジャッジ日時 | 2025-01-24 12:37:48 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 40 |
ソースコード
#line 1 "combinatorial_opt/test/mincostflow.yuki1288.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1288"
#line 2 "combinatorial_opt/mincostflow_nonegativeloop.hpp"
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
#include <array>
#include <limits>
#include <type_traits>
#include <utility>
#include <vector>
template <class Uint> class radix_heap_array {
int sz;
Uint last;
std::array<std::vector<std::pair<Uint, int>>, std::numeric_limits<Uint>::digits + 1> v;
struct smallpii {
unsigned b : 7;
int j : 25;
};
std::vector<smallpii> i2bj;
template <class U, typename std::enable_if<sizeof(U) == 4>::type * = nullptr>
static inline unsigned bucket(U x) noexcept {
return x ? 32 - __builtin_clz(x) : 0;
}
template <class U, typename std::enable_if<sizeof(U) == 8>::type * = nullptr>
static inline unsigned bucket(U x) noexcept {
return x ? 64 - __builtin_clzll(x) : 0;
}
void pull() {
if (!v[0].empty()) return;
int b = 1;
while (v[b].empty()) ++b;
last = v[b].back().first;
for (int j = 0; j < int(v[b].size()); j++) last = std::min(last, v[b][j].first);
for (int j = 0; j < int(v[b].size()); j++) {
int i = v[b][j].second;
auto bnxt = bucket(v[b][j].first ^ last);
i2bj[i] = {bnxt, int(v[bnxt].size())}, v[bnxt].emplace_back(std::move(v[b][j]));
}
v[b].clear();
}
public:
radix_heap_array() : sz(0), last(0) {}
bool empty() const noexcept { return sz == 0; }
int argmin_pop() {
pull(), --sz;
int i = v[0].back().second;
i2bj[i].j = -1;
v[0].pop_back();
return i;
}
void chmin(Uint vnew, int i) {
if (i >= int(i2bj.size())) i2bj.resize(i + 1, {0, -1});
if (i2bj[i].j < 0) {
auto b = bucket(vnew ^ last);
++sz, i2bj[i] = {b, int(v[b].size())}, v[b].emplace_back(vnew, i);
} else if (v[i2bj[i].b][i2bj[i].j].first > vnew) {
auto bold = i2bj[i].b, bnew = bucket(vnew ^ last);
if (bnew < bold) {
int ilast = v[bold].back().second, j = i2bj[i].j;
std::swap(v[bold][j], v[bold].back());
i2bj[ilast].j = j, i2bj[i] = {bnew, int(v[bnew].size())};
v[bnew].emplace_back(vnew, i), v[bold].pop_back();
} else {
v[bold][i2bj[i].j].first = vnew;
}
}
}
void pop() { argmin_pop(); }
std::pair<Uint, int> top() { return pull(), v[0].back(); }
[[deprecated("NOT usual emplace() opeation!")]] void emplace(Uint vnew, int i) { chmin(vnew, i); }
void clear() noexcept { sz = 0, last = 0, i2bj.clear(); }
};
// CUT begin
// Minimum cost flow WITH NO NEGATIVE CYCLE (just negative cost edge is allowed)
// Verified:
// - SRM 770 Div1 Medium https://community.topcoder.com/stat?c=problem_statement&pm=15702
// - CodeChef LTIME98 Ancient Magic https://www.codechef.com/problems/ANCT
template <class Cap, class Cost, Cost INF_COST = std::numeric_limits<Cost>::max() / 2> struct MinCostFlow {
template <class E> struct csr {
std::vector<int> start;
std::vector<E> elist;
explicit csr(int n, const std::vector<std::pair<int, E>> &edges) : start(n + 1), elist(edges.size()) {
for (auto e : edges) { start[e.first + 1]++; }
for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; }
auto counter = start;
for (auto e : edges) { elist[counter[e.first]++] = e.second; }
}
};
public:
MinCostFlow() {}
explicit MinCostFlow(int n) : is_dual_infeasible(false), _n(n) {
static_assert(std::numeric_limits<Cap>::max() > 0, "max() must be greater than 0");
}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
// assert(0 <= cost);
if (cost < 0) is_dual_infeasible = true;
int m = int(_edges.size());
_edges.push_back({from, to, cap, 0, cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(_edges.size());
assert(0 <= i && i < m);
return _edges[i];
}
std::vector<edge> edges() { return _edges; }
std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); }
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); }
std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
int m = int(_edges.size());
std::vector<int> edge_idx(m);
auto g = [&]() {
std::vector<int> degree(_n), redge_idx(m);
std::vector<std::pair<int, _edge>> elist;
elist.reserve(2 * m);
for (int i = 0; i < m; i++) {
auto e = _edges[i];
edge_idx[i] = degree[e.from]++;
redge_idx[i] = degree[e.to]++;
elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
}
auto _g = csr<_edge>(_n, elist);
for (int i = 0; i < m; i++) {
auto e = _edges[i];
edge_idx[i] += _g.start[e.from];
redge_idx[i] += _g.start[e.to];
_g.elist[edge_idx[i]].rev = redge_idx[i];
_g.elist[redge_idx[i]].rev = edge_idx[i];
}
return _g;
}();
auto result = slope(g, s, t, flow_limit);
for (int i = 0; i < m; i++) {
auto e = g.elist[edge_idx[i]];
_edges[i].flow = _edges[i].cap - e.cap;
}
return result;
}
private:
bool is_dual_infeasible;
int _n;
std::vector<edge> _edges;
// inside edge
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<Cap, Cost>> slope(csr<_edge> &g, int s, int t, Cap flow_limit) {
// variants (C = maxcost):
// -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
// reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
// dual_dist[i] = (dual[i], dist[i])
std::vector<std::pair<Cost, Cost>> dual_dist(_n);
if (is_dual_infeasible) {
auto check_dag = [&]() {
std::vector<int> deg_in(_n);
for (int v = 0; v < _n; v++) {
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
deg_in[g.elist[i].to] += g.elist[i].cap > 0;
}
}
std::vector<int> st;
st.reserve(_n);
for (int i = 0; i < _n; i++) {
if (!deg_in[i]) st.push_back(i);
}
for (int n = 0; n < _n; n++) {
if (int(st.size()) == n) return false; // Not DAG
int now = st[n];
for (int i = g.start[now]; i < g.start[now + 1]; i++) {
const auto &e = g.elist[i];
if (!e.cap) continue;
deg_in[e.to]--;
if (deg_in[e.to] == 0) st.push_back(e.to);
if (dual_dist[e.to].first >= dual_dist[now].first + e.cost)
dual_dist[e.to].first = dual_dist[now].first + e.cost;
}
}
return true;
}();
if (!check_dag) throw;
auto dt = dual_dist[t].first;
for (int v = 0; v < _n; v++) dual_dist[v].first -= dt;
is_dual_infeasible = false;
}
std::vector<int> prev_e(_n);
std::vector<bool> vis(_n);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
// std::vector<int> que_min;
// std::vector<Q> que;
auto dual_ref = [&]() {
for (int i = 0; i < _n; i++) { dual_dist[i].second = std::numeric_limits<Cost>::max(); }
std::fill(vis.begin(), vis.end(), false);
// que_min.clear();
// que.clear();
// que[0..heap_r) was heapified
// unsigned heap_r = 0;
dual_dist[s].second = 0;
// que_min.push_back(s);
radix_heap_array<unsigned long long> heap;
heap.chmin(0, s);
// while (!que_min.empty() || !que.empty()) {
while (!heap.empty()) {
int v = heap.argmin_pop();
// if (!que_min.empty()) {
// v = que_min.back();
// que_min.pop_back();
// } else {
// while (heap_r < que.size()) {
// heap_r++;
// std::push_heap(que.begin(), que.begin() + heap_r);
// }
// v = que.front().to;
// std::pop_heap(que.begin(), que.end());
// que.pop_back();
// heap_r--;
// }
// if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
// dist[v] = shortest(s, v) + dual[s] - dual[v]
// dist[v] >= 0 (all reduced cost are positive)
// dist[v] <= (n-1)C
Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto e = g.elist[i];
if (!e.cap) continue;
// |-dual[e.to] + dual[v]| <= (n-1)C
// cost <= C - -(n-1)C + 0 = nC
Cost cost = e.cost - dual_dist[e.to].first + dual_v;
if (dual_dist[e.to].second - dist_v > cost) {
Cost dist_to = dist_v + cost;
dual_dist[e.to].second = dist_to;
prev_e[e.to] = e.rev;
heap.chmin(dist_to, e.to);
// if (dist_to == dist_v) {
// que_min.push_back(e.to);
// } else {
// que.push_back(Q{dist_to, e.to});
// }
}
}
}
if (!vis[t]) { return false; }
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
// dual[v] = dual[v] - dist[t] + dist[v]
// = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
// (shortest(s, v) + dual[s] - dual[v]) = - shortest(s,
// t) + dual[t] + shortest(s, v) = shortest(s, v) -
// shortest(s, t) >= 0 - (n-1)C
dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
while (flow < flow_limit) {
if (!dual_ref()) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
}
for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
auto &e = g.elist[prev_e[v]];
e.cap += c;
g.elist[e.rev].cap -= c;
}
Cost d = -dual_dist[s].first;
flow += c;
cost += c * d;
if (prev_cost_per_flow == d) { result.pop_back(); }
result.push_back({flow, cost});
prev_cost_per_flow = d;
}
return result;
}
};
#line 3 "combinatorial_opt/test/mincostflow.yuki1288.test.cpp"
#include <iostream>
#include <numeric>
#include <string>
#line 7 "combinatorial_opt/test/mincostflow.yuki1288.test.cpp"
using namespace std;
int main() {
int N;
string S;
cin >> N >> S;
vector<long long> V(N);
for (auto &x : V) cin >> x;
const int s = N * 5, t = s + 1;
MinCostFlow<int, long long> graph(t + 1);
for (int d = 0; d < 5; d++) {
for (int i = 0; i < N - 1; i++) graph.add_edge(d * N + i, d * N + i + 1, N / 4, 0);
}
graph.add_edge(s - 1, 0, N / 4, 0);
for (int i = 0; i < N; i++) {
int b = 0;
if (S[i] == 'u') b = N * 1;
if (S[i] == 'k') b = N * 2;
if (S[i] == 'i') b = N * 3;
int fr = b + i + N, to = b + i;
graph.add_edge(s, fr, 1, 0);
graph.add_edge(fr, to, 1, V[i]);
graph.add_edge(to, t, 1, 0);
}
auto cost = graph.flow(s, t, N).second;
cout << accumulate(V.begin(), V.end(), 0LL) - cost << '\n';
}
hitonanode