結果

問題 No.1673 Lamps on a line
ユーザー nephrologistnephrologist
提出日時 2021-09-11 12:49:28
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,436 ms / 2,000 ms
コード長 6,431 bytes
コンパイル時間 276 ms
コンパイル使用メモリ 87,052 KB
実行使用メモリ 208,572 KB
最終ジャッジ日時 2023-09-04 23:30:23
合計ジャッジ時間 8,549 ms
ジャッジサーバーID
(参考情報)
judge11 / judge12
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 72 ms
71,120 KB
testcase_01 AC 73 ms
70,972 KB
testcase_02 AC 374 ms
82,996 KB
testcase_03 AC 226 ms
79,548 KB
testcase_04 AC 365 ms
84,000 KB
testcase_05 AC 292 ms
80,652 KB
testcase_06 AC 514 ms
83,420 KB
testcase_07 AC 1,228 ms
208,572 KB
testcase_08 AC 283 ms
137,688 KB
testcase_09 AC 1,260 ms
148,460 KB
testcase_10 AC 1,436 ms
194,720 KB
testcase_11 AC 431 ms
136,408 KB
testcase_12 AC 680 ms
179,212 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

# https://yukicoder.me/problems/no/1673
# from ACL python
# https://github.com/shakayami/ACL-for-python
import sys
input = sys.stdin.buffer.readline
class LazySegmentTree:
    """
    V: initial array
    OP: (seg, seg) -> (seg)
    E: element of segment tree
    MAPPING: lazy -> segment
    COMPOSITION: (lazy,lazy) -> (lazy)
    ID: element of lazy

    apply
    apply_point: apply_point
    apply: apply_range

    queries
    get: get_point
    prod: get_range

    """

    def update(self, k):
        self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1])

    def all_apply(self, k, f):
        self.d[k] = self.mapping(f, self.d[k])
        if k < self.size:
            self.lz[k] = self.composition(f, self.lz[k])

    def push(self, k):
        self.all_apply(2 * k, self.lz[k])
        self.all_apply(2 * k + 1, self.lz[k])
        self.lz[k] = self.identity

    def __init__(self, V, OP, E, MAPPING, COMPOSITION, ID):
        self.n = len(V)
        self.log = (self.n - 1).bit_length()
        self.size = 1 << self.log
        self.d = [E for i in range(2 * self.size)]
        self.lz = [ID for i in range(self.size)]
        self.e = E
        self.op = OP
        self.mapping = MAPPING
        self.composition = COMPOSITION
        self.identity = ID
        for i in range(self.n):
            self.d[self.size + i] = V[i]
        for i in range(self.size - 1, 0, -1):
            self.update(i)

    def set(self, p, x):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.d[p] = x
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def get(self, p):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        return self.d[p]

    def prod(self, l, r):
        assert 0 <= l and l <= r and r <= self.n
        if l == r:
            return self.e
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if ((l >> i) << i) != l:
                self.push(l >> i)
            if ((r >> i) << i) != r:
                self.push(r >> i)
        sml, smr = self.e, self.e
        while l < r:
            if l & 1:
                sml = self.op(sml, self.d[l])
                l += 1
            if r & 1:
                r -= 1
                smr = self.op(self.d[r], smr)
            l >>= 1
            r >>= 1
        return self.op(sml, smr)

    def all_prod(self):
        return self.d[1]

    def apply_point(self, p, f):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.d[p] = self.mapping(f, self.d[p])
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def apply(self, l, r, f):
        assert 0 <= l and l <= r and r <= self.n
        if l == r:
            return
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if ((l >> i) << i) != l:
                self.push(l >> i)
            if ((r >> i) << i) != r:
                self.push((r - 1) >> i)
        l2, r2 = l, r
        while l < r:
            if l & 1:
                self.all_apply(l, f)
                l += 1
            if r & 1:
                r -= 1
                self.all_apply(r, f)
            l >>= 1
            r >>= 1
        l, r = l2, r2
        for i in range(1, self.log + 1):
            if ((l >> i) << i) != l:
                self.update(l >> i)
            if ((r >> i) << i) != r:
                self.update((r - 1) >> i)

    def max_right(self, l, g):
        assert 0 <= l and l <= self.n
        assert g(self.e)
        if l == self.n:
            return self.n
        l += self.size
        for i in range(self.log, 0, -1):
            self.push(l >> i)
        sm = self.e
        while 1:
            while i % 2 == 0:
                l >>= 1
            if not (g(self.op(sm, self.d[l]))):
                while l < self.size:
                    self.push(l)
                    l = 2 * l
                    if g(self.op(sm, self.d[l])):
                        sm = self.op(sm, self.d[l])
                        l += 1
                return l - self.size
            sm = self.op(sm, self.d[l])
            l += 1
            if (l & -l) == l:
                break
        return self.n

    def min_left(self, r, g):
        assert 0 <= r and r <= self.n
        assert g(self.e)
        if r == 0:
            return 0
        r += self.size
        for i in range(self.log, 0, -1):
            self.push((r - 1) >> i)
        sm = self.e
        while 1:
            r -= 1
            while r > 1 and (r % 2):
                r >>= 1
            if not (g(self.op(self.d[r], sm))):
                while r < self.size:
                    self.push(r)
                    r = 2 * r + 1
                    if g(self.op(self.d[r], sm)):
                        sm = self.op(self.d[r], sm)
                        r -= 1
                return r + 1 - self.size
            sm = self.op(self.d[r], sm)
            if (r & -r) == r:
                break
        return 0

    def debug(self):
        print("Segmant")
        for i in range(self.log):
            print(self.d[1 << i : 1 << (i + 1)])
        print("Lazy")
        for i in range(self.log):
            print(self.lz[1 << i : 1 << (i + 1)])


element = (0, -1, -1)
lazy_element = 0


def operation(s1, s2):
    a1, b1, c1 = s1
    a2, b2, c2 = s2
    if b1 == -1:
        return s2
    if b2 == -1:
        return s1
    assert b1 < b2
    assert c1 < c2
    return (a1 + a2, b1, c2)


def mapping(l1, s1):
    if not l1:
        return s1
    a1, b1, c1 = s1
    if b1 == -1:
        return s1
    return ((c1 - b1) - a1, b1, c1)


def composition(l1, l2):
    if l1 == 1 and l2 == 1:
        return 0
    if l1 == 0 and l2 == 1:
        return 1
    if l1 == 1 and l2 == 0:
        return 1
    if l1 == 0 and l2 == 0:
        return 0
    return l1 ^ l2


n, q = map(int, input().split())


A = [(0, i, i + 1) for i in range(n)]

LST = LazySegmentTree(A, operation, element, mapping, composition, lazy_element)

for _ in range(q):
    left, right = map(int, input().split())
    left, right = left - 1, right - 1
    LST.apply(left, right + 1, 1)
    print(LST.prod(0, n)[0])
    # print(LST.all_prod())

0