結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | uw_yu1rabbit |
提出日時 | 2021-09-11 19:27:21 |
言語 | Rust (1.77.0 + proconio) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,324 bytes |
コンパイル時間 | 13,338 ms |
コンパイル使用メモリ | 380,200 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-23 03:55:35 |
合計ジャッジ時間 | 22,596 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 4,684 ms
5,376 KB |
コンパイルメッセージ
warning: value assigned to `t` is never read --> src/main.rs:91:17 | 91 | let mut t = 0; | ^ | = help: maybe it is overwritten before being read? = note: `#[warn(unused_assignments)]` on by default warning: constant `INF` is never used --> src/main.rs:84:7 | 84 | const INF:i64 = 1i64 << 60; | ^^^ | = note: `#[warn(dead_code)]` on by default
ソースコード
#[allow(dead_code)] fn solve(read: &mut snio::Reader<std::io::StdinLock<'_>>) { let n = read.i64(); for _ in 0..n { let f = read.i128(); println!("{} {}",f, if miller_rabin(f,100) {1} else {0}); } } //use proconio::input; fn main() { let t = std::io::stdin(); let mut read = snio::Reader::new(t.lock()); let n = 1; for _ in 0..n { solve(&mut read); } } #[allow(dead_code)] pub mod snio { pub struct Reader<R: std::io::BufRead> { reader: R, buf: std::collections::VecDeque<String>, } impl<R: std::io::BufRead> Reader<R> { pub fn new(reader: R) -> Self { Self { reader, buf: std::collections::VecDeque::new(), } } fn load(&mut self) { while self.buf.is_empty() { let mut s = String::new(); let length = self.reader.read_line(&mut s).unwrap(); if length == 0 { break; } self.buf.extend(s.split_whitespace().map(|s| s.to_owned())); } } pub fn string(&mut self) -> String { self.load(); self.buf.pop_front().unwrap_or_else(|| panic!("input ended")) } pub fn char(&mut self) -> char { let string = self.string(); let mut chars = string.chars(); let res = chars.next().unwrap(); assert!(chars.next().is_none(), "invalid input!"); res } pub fn chars(&mut self) -> Vec<char> { self.read::<String>().chars().collect() } pub fn read<T: std::str::FromStr>(&mut self) -> T where <T as ::std::str::FromStr>::Err: ::std::fmt::Debug, { self.string().parse::<T>().expect("Failed to parse the input.") } } macro_rules! definition_of_reader_of_numbers { ($($ty:tt,)*) => { impl <R:std::io::BufRead> Reader<R> { $( #[inline] pub fn $ty (&mut self) -> $ty { self.read::<$ty>() } )* } } } definition_of_reader_of_numbers! { u8,u16,u32,u64,usize, i8,i16,i32,i64,isize,i128, f32,f64, } } const INF:i64 = 1i64 << 60; static mut XORSHIFT1:i128 = 123456789; static mut XORSHIFT2:i128 = 362436069; static mut XORSHIFT3:i128 = 521288629; static mut XORSHIFT4:i128 = 88675123; fn xorshift() -> i128 { unsafe { let mut t = 0; t = XORSHIFT1^(XORSHIFT1 << 11i128); XORSHIFT1 = XORSHIFT2; XORSHIFT2 = XORSHIFT3; XORSHIFT3 = XORSHIFT4; XORSHIFT4 = (XORSHIFT4 ^ (XORSHIFT4 >> 19i128)) ^ (t ^ (t >> 8i128)); t } } fn witness(n: i128, a: i128) -> bool { let mut t = 0; let mut u = n - 1; while u & 1i128 == 0 { t += 1; u >>= 1; } let mut x:i128 = modpow(a % n, u % n, n); for _ in 0..t { let b = x * x % n; if b == 1 { if b != 1 && b != n - 1 { return true; } else { return false; } } x = b; } true } fn miller_rabin(n: i128, times: i64) -> bool { if n == 1 { return false; } if n % 2 == 0 { return n == 2; } for _ in 0..times { //let mut a = rand::thread_rng().gen_range(1,n); let mut a = xorshift() % n; while a == 0 { a = xorshift() % n; } if witness(n, a) { return false; } } true } fn modpow(_x: i128, _n: i128, modulo: i128) -> i128 { /*let mut x = _x; let mut n = _n; x = (x % modulo + modulo) % modulo; n = (n % modulo + modulo) % modulo; if n == 0 { return 0; } let mut res = modpow((x + x % modulo + modulo) % modulo, n >> 1,modulo); if n % 2 != 0 { res = ((res + x) % modulo + modulo) % modulo; } res*/ if _n == 1 { return _x % modulo; } let b = modpow(_x,_n / 2,modulo) % modulo; if _n % 2 == 0 { return (b * b) % modulo; }else { return (_x * ((b * b) % modulo)) % modulo; } }