結果

問題 No.3030 ミラー・ラビン素数判定法のテスト
ユーザー uw_yu1rabbituw_yu1rabbit
提出日時 2021-09-11 19:27:21
言語 Rust
(1.77.0 + proconio)
結果
WA  
実行時間 -
コード長 4,324 bytes
コンパイル時間 13,338 ms
コンパイル使用メモリ 380,200 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-23 03:55:35
合計ジャッジ時間 22,596 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 AC 4,684 ms
5,376 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: value assigned to `t` is never read
  --> src/main.rs:91:17
   |
91 |         let mut t = 0;
   |                 ^
   |
   = help: maybe it is overwritten before being read?
   = note: `#[warn(unused_assignments)]` on by default

warning: constant `INF` is never used
  --> src/main.rs:84:7
   |
84 | const INF:i64 = 1i64 << 60;
   |       ^^^
   |
   = note: `#[warn(dead_code)]` on by default

ソースコード

diff #

#[allow(dead_code)]
fn solve(read: &mut snio::Reader<std::io::StdinLock<'_>>) {
    let n = read.i64();
    for _ in 0..n {
        let f = read.i128();
        println!("{} {}",f, if miller_rabin(f,100) {1} else {0});
    }
}
 
//use proconio::input;
fn main() {
    let t = std::io::stdin();
    let mut read = snio::Reader::new(t.lock());
    let n = 1;
    for _ in 0..n {
        solve(&mut read);
    }
}
 
#[allow(dead_code)]
pub mod snio {
    pub struct Reader<R: std::io::BufRead> {
        reader: R,
        buf: std::collections::VecDeque<String>,
    }
 
    impl<R: std::io::BufRead> Reader<R> {
        pub fn new(reader: R) -> Self {
            Self {
                reader,
                buf: std::collections::VecDeque::new(),
            }
        }
        fn load(&mut self) {
            while self.buf.is_empty() {
                let mut s = String::new();
                let length = self.reader.read_line(&mut s).unwrap();
                if length == 0 {
                    break;
                }
                self.buf.extend(s.split_whitespace().map(|s| s.to_owned()));
            }
        }
        pub fn string(&mut self) -> String {
            self.load();
            self.buf.pop_front().unwrap_or_else(|| panic!("input ended"))
        }
        pub fn char(&mut self) -> char {
            let string = self.string();
            let mut chars = string.chars();
            let res = chars.next().unwrap();
            assert!(chars.next().is_none(), "invalid input!");
            res
        }
        pub fn chars(&mut self) -> Vec<char> {
            self.read::<String>().chars().collect()
        }
        pub fn read<T: std::str::FromStr>(&mut self) -> T
            where
                <T as ::std::str::FromStr>::Err: ::std::fmt::Debug,
        {
            self.string().parse::<T>().expect("Failed to parse the input.")
        }
    }
    macro_rules! definition_of_reader_of_numbers {
            ($($ty:tt,)*) => {
                impl <R:std::io::BufRead> Reader<R> {
                    $(
                    #[inline]
                    pub fn $ty (&mut self) -> $ty {
                        self.read::<$ty>()
                    }
                    )*
                }
            }
        }
    definition_of_reader_of_numbers! {
        u8,u16,u32,u64,usize,
        i8,i16,i32,i64,isize,i128,
        f32,f64,
    }
}

const INF:i64 = 1i64 << 60;
static mut XORSHIFT1:i128 = 123456789;
static mut XORSHIFT2:i128 = 362436069;
static mut XORSHIFT3:i128 = 521288629;
static mut XORSHIFT4:i128 = 88675123;
fn xorshift() -> i128 {
    unsafe {
        let mut t = 0;
        t = XORSHIFT1^(XORSHIFT1 << 11i128);
        XORSHIFT1 = XORSHIFT2;
        XORSHIFT2 = XORSHIFT3;
        XORSHIFT3 = XORSHIFT4;
        XORSHIFT4 = (XORSHIFT4 ^ (XORSHIFT4 >> 19i128)) ^ (t ^ (t >> 8i128));
        t
    }
}
fn witness(n: i128, a: i128) -> bool {
    let mut t = 0;
    let mut u = n - 1;
    while u & 1i128 == 0 {
        t += 1;
        u >>= 1;
    }
    let mut x:i128 = modpow(a % n, u % n, n);

    for _ in 0..t {
        let b = x * x % n;
        if b == 1 {
            if b != 1 && b != n - 1 {
                return true;
            } else {
                return false;
            }
        }
        x = b;
    }
    true
}
fn miller_rabin(n: i128, times: i64) -> bool {
    if n == 1 {
        return false;
    }
    if n % 2 == 0 {
        return n == 2;
    }

    for _ in 0..times {
        //let mut a = rand::thread_rng().gen_range(1,n);
        let mut a = xorshift() % n;
        while a == 0 {
            a = xorshift() % n;
        }
        if witness(n, a) {
            return false;
        }
    }
    true
}
fn modpow(_x: i128, _n: i128, modulo: i128) -> i128 {
    /*let mut x = _x;
    let mut n = _n;
    x = (x % modulo + modulo) % modulo;
    n = (n % modulo + modulo) % modulo;
    if n == 0 {
        return 0;
    }
    let mut res = modpow((x + x % modulo + modulo)  % modulo, n >> 1,modulo);
    if n % 2 != 0 {
        res = ((res + x) % modulo + modulo) % modulo;
    }
    res*/
    if _n == 1 {
        return _x % modulo;
    }
    let b = modpow(_x,_n / 2,modulo) % modulo;
    if _n % 2 == 0 {
        return (b * b) % modulo;
    }else {
        return (_x * ((b * b) % modulo)) % modulo;
    }
}
0