結果

問題 No.1693 Invasion
ユーザー 👑 KazunKazun
提出日時 2021-09-12 20:09:15
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 177 ms / 2,000 ms
コード長 5,467 bytes
コンパイル時間 228 ms
コンパイル使用メモリ 82,304 KB
実行使用メモリ 91,904 KB
最終ジャッジ日時 2024-07-19 09:53:56
合計ジャッジ時間 3,901 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 44 ms
53,120 KB
testcase_01 AC 45 ms
53,120 KB
testcase_02 AC 51 ms
53,248 KB
testcase_03 AC 52 ms
59,392 KB
testcase_04 AC 46 ms
52,992 KB
testcase_05 AC 56 ms
61,056 KB
testcase_06 AC 58 ms
61,696 KB
testcase_07 AC 63 ms
63,488 KB
testcase_08 AC 57 ms
61,440 KB
testcase_09 AC 148 ms
87,040 KB
testcase_10 AC 123 ms
88,832 KB
testcase_11 AC 108 ms
85,888 KB
testcase_12 AC 131 ms
88,832 KB
testcase_13 AC 109 ms
83,072 KB
testcase_14 AC 113 ms
84,224 KB
testcase_15 AC 105 ms
79,744 KB
testcase_16 AC 124 ms
85,120 KB
testcase_17 AC 44 ms
52,864 KB
testcase_18 AC 169 ms
89,088 KB
testcase_19 AC 99 ms
91,904 KB
testcase_20 AC 51 ms
59,520 KB
testcase_21 AC 176 ms
88,192 KB
testcase_22 AC 163 ms
88,576 KB
testcase_23 AC 177 ms
88,320 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

class Modulo_Error(Exception):
    pass

class Modulo():
    __slots__=["a","n"]

    def __init__(self,a,n):
        self.a=a%n
        self.n=n

    def __str__(self):
        return "{} (mod {})".format(self.a,self.n)

    def __repr__(self):
        return self.__str__()

    #+,-
    def __pos__(self):
        return self

    def __neg__(self):
        return  Modulo(-self.a,self.n)

    #等号,不等号
    def __eq__(self,other):
        if isinstance(other,Modulo):
            return (self.a==other.a) and (self.n==other.n)
        elif isinstance(other,int):
            return (self-other).a==0

    def __neq__(self,other):
        return not(self==other)

    def __le__(self,other):
        a,p=self.a,self.n
        b,q=other.a,other.n
        return (a-b)%q==0 and p%q==0

    def __ge__(self,other):
        return other<=self

    def __lt__(self,other):
        return (self<=other) and (self!=other)

    def __gt__(self,other):
        return (self>=other) and (self!=other)

    def __contains__(self,val):
        return val%self.n==self.a

    #加法
    def __add__(self,other):
        if isinstance(other,Modulo):
            if self.n!=other.n:
                raise Modulo_Error("異なる法同士の演算です.")
            return Modulo(self.a+other.a,self.n)
        elif isinstance(other,int):
            return Modulo(self.a+other,self.n)

    def __radd__(self,other):
        if isinstance(other,int):
            return Modulo(self.a+other,self.n)

    def __iadd__(self,other):
        if isinstance(other,Modulo):
            if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.")
            self.a+=other.a
            if self.a>=self.n: self.a-=self.n
        elif isinstance(other,int):
            self.a+=other
            if self.a>=self.n: self.a-=self.n
        return self

    #減法
    def __sub__(self,other):
        return self+(-other)

    def __rsub__(self,other):
        if isinstance(other,int):
            return -self+other

    def __isub__(self,other):
        if isinstance(other,Modulo):
            if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.")
            self.a-=other.a
            if self.a<0: self.a+=self.n
        elif isinstance(other,int):
            self.a-=other
            if self.a<0: self.a+=self.n
        return self

    #乗法
    def __mul__(self,other):
        if isinstance(other,Modulo):
            if self.n!=other.n:
                raise Modulo_Error("異なる法同士の演算です.")
            return Modulo(self.a*other.a,self.n)
        elif isinstance(other,int):
            return Modulo(self.a*other,self.n)

    def __rmul__(self,other):
        if isinstance(other,int):
            return Modulo(self.a*other,self.n)

    def __imul__(self,other):
        if isinstance(other,Modulo):
            if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.")
            self.a*=other.a
        elif isinstance(other,int):
            self.a*=other
        self.a%=self.n
        return self

    #Modulo逆数
    def inverse(self):
        return self.Modulo_Inverse()

    def Modulo_Inverse(self):
        s,t=1,0
        a,b=self.a,self.n
        while b:
            q,a,b=a//b,b,a%b
            s,t=t,s-q*t

        if a!=1:
            raise Modulo_Error("{}の逆数が存在しません".format(self))
        else:
            return Modulo(s,self.n)

    #除法
    def __truediv__(self,other):
        return self*(other.Modulo_Inverse())

    def __rtruediv__(self,other):
        return other*(self.Modulo_Inverse())

    #累乗
    def __pow__(self,other):
        if isinstance(other,int):
            u=abs(other)

            r=Modulo(pow(self.a,u,self.n),self.n)
            if other>=0:
                return r
            else:
                return r.Modulo_Inverse()
        else:
            b,n=other.a,other.n
            if pow(self.a,n,self.n)!=1:
                raise Modulo_Error("矛盾なく定義できません.")
            else:
                return self**b

def Factor_Modulo(N,Mod,Mode=0):
    """
    Mode=0: N! (mod Mod) を求める.
    Mode=1: k! (mod Mod) (k=0,1,...,N) のリストも出力する.

    [計算量]
    O(N)
    """

    if Mode==0:
        X=1
        for k in range(1,N+1):
            X*=k; X%=Mod
        return Modulo(X,Mod)
    else:
        L=[Modulo(1,Mod)]*(N+1)
        for k in range(1,N+1):
            L[k]=k*L[k-1]
        return L

def Factor_Modulo_with_Inverse(N, Mod):
    """ k=0,1,...,N に対する k! (mod Mod) と (k!)^(-1) (mod Mod) のリストを出力する.

    [入力]
    N, Mod: 整数
    Mod >0
    [出力]
    長さ N+1 のリストのタプル (F,G): F[k]=k! (mod M), G[k]=(k!)^(-1) (mod M)
    [計算量]
    O(N+log Mod)
    """

    assert Mod>0

    F=Factor_Modulo(N,Mod,Mode=1)
    G=[0]*(N+1)

    G[-1]=F[-1].inverse()
    for k in range(N,0,-1):
        G[k-1]=k*G[k]
    return F,G
#==================================================
def nCr(n,r):
    return F[n]*G[r]*G[n-r]

#==================================================
N,M=map(int,input().split())
A=list(map(int,input().split()))

inf=float("inf")
DP=[inf]*(M+1); DP[0]=0

for a in A:
    for x in range(a,M+1):
        DP[x]=min(DP[x],DP[x-a]+1)

X=0
Mod=998244353

F,G=Factor_Modulo_with_Inverse(M+1,Mod)
for k in range(M+1):
    if DP[k]<inf:
        X+=nCr(M-DP[k],k-DP[k])

print(X.a)
0