結果
| 問題 |
No.1678 Coin Trade (Multiple)
|
| コンテスト | |
| ユーザー |
keijak
|
| 提出日時 | 2021-09-13 13:22:08 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,148 bytes |
| コンパイル時間 | 3,269 ms |
| コンパイル使用メモリ | 227,204 KB |
| 最終ジャッジ日時 | 2025-01-24 13:35:24 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 35 TLE * 21 |
ソースコード
#include <bits/stdc++.h>
#include <atcoder/mincostflow>
#define REP_(i, a_, b_, a, b, ...) \
for (int i = (a), END_##i = (b); i < END_##i; ++i)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(x) std::begin(x), std::end(x)
using i64 = long long;
template<typename T, typename U>
inline bool chmax(T &a, U b) {
return a < b and ((a = std::move(b)), true);
}
template<typename T, typename U>
inline bool chmin(T &a, U b) {
return a > b and ((a = std::move(b)), true);
}
template<typename T>
inline int ssize(const T &a) {
return (int) std::size(a);
}
template<typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &a) {
for (auto &x: a) is >> x;
return is;
}
template<typename T, typename U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &a) {
return os << "(" << a.first << ", " << a.second << ")";
}
template<typename Container>
std::ostream &print_seq(const Container &a, std::string_view sep = " ",
std::string_view ends = "\n",
std::ostream &os = std::cout) {
auto b = std::begin(a), e = std::end(a);
for (auto it = std::begin(a); it != e; ++it) {
if (it != b) os << sep;
os << *it;
}
return os << ends;
}
template<typename T, typename = void>
struct is_iterable : std::false_type {};
template<typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
decltype(std::end(std::declval<T>()))>>
: std::true_type {
};
template<typename T, typename = std::enable_if_t<
is_iterable<T>::value &&
!std::is_same<T, std::string_view>::value &&
!std::is_same<T, std::string>::value>>
std::ostream &operator<<(std::ostream &os, const T &a) {
return print_seq(a, ", ", "", (os << "{")) << "}";
}
void print() { std::cout << "\n"; }
template<class T>
void print(const T &x) {
std::cout << x << "\n";
}
template<typename Head, typename... Tail>
void print(const Head &head, Tail... tail) {
std::cout << head << " ";
print(tail...);
}
struct Input {
template<typename T>
operator T() const {
T x;
std::cin >> x;
return x;
}
} in;
#ifdef MY_DEBUG
#include "debug_dump.hpp"
#else
#define DUMP(...)
#endif
template<class T>
T ceil_div(T x, T y) {
assert(y != 0);
return x / y + (((x ^ y) >= 0) and (x % y));
}
const i64 INF = std::numeric_limits<i64>::max();
struct Edge {
i64 cost;
int to;
};
// Finds the shortest path from the start node and detects negative cycle if
// exists. Returns the minimum cost from the start node to each node. INF
// indicates unreachable. -INF indicates having a negative cycle in a path from
// the start node.
auto bellman_ford(const std::vector<std::vector<Edge>> &adj, const int start) {
const int n = int(adj.size());
std::vector<i64> mincost(n, INF);
mincost[start] = 0;
for (int k = 0; k < n - 1; ++k) {
for (int i = 0; i < n; ++i) {
const i64 di = mincost[i];
if (di == INF) continue; // Haven't reached i yet.
for (const Edge &e: adj[i]) {
if (mincost[e.to] > di + e.cost) {
mincost[e.to] = di + e.cost;
}
}
}
}
// Negative cycle detection.
// If there's no negative cycle, at least one node gets the shortest
// distance determined in each iteration above. If we have gone through N-1
// iterations and still have an update, there must be a negative cycle.
for (int k = 0; k < n; ++k) {
bool updated = false;
for (int i = 0; i < n; ++i) {
const i64 di = mincost[i];
if (di == INF) continue;
const bool in_negative_cycle = (di == -INF);
for (const Edge &e: adj[i]) {
if (mincost[e.to] == -INF) continue;
if (in_negative_cycle or (mincost[e.to] > di + e.cost)) {
mincost[e.to] = -INF;
updated = true;
}
}
}
if (not updated) break;
}
return mincost;
}
using namespace std;
auto solve() {
const int n = in, K = in;
vector<vector<Edge>> bg(n);
atcoder::mcf_graph<int, i64> g(n);
vector<i64> a(n);
i64 offset = 0;
vector<tuple<i64, int, int>> edges;
REP(i, n) {
a[i] = in;
int m = in;
REP(j, m) {
int b = in;
--b;
i64 cost = a[b] - a[i];
if (cost < 0) {
bg[b].push_back({cost, i});
chmax(offset, ceil_div<i64>(-cost, i - b));
edges.emplace_back(cost, b, i);
}
}
}
REP(i, n - 1) {
bg[i].push_back({0, i + 1});
}
auto potential = bellman_ford(bg, 0);
assert (all_of(ALL(potential), [](i64 x) { return x < INF; }));
DUMP(potential);
for (auto[cost, from, to]: edges) {
assert(from < to);
assert(cost < 0);
assert(cost + offset * (to - from) >= 0);
g.add_edge(from, to, 1, cost + (potential[from] - potential[to]));
}
REP(i, n - 1) {
g.add_edge(i, i + 1, K, potential[i] - potential[i + 1]);
}
auto[mf, mc] = g.flow(0, n - 1, K);
assert(mf == K);
DUMP(mc);
DUMP(offset);
mc -= K * (potential[0] - potential[n - 1]);
return -mc;
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(nullptr);
auto ans = solve();
print(ans);
}
keijak