結果
| 問題 |
No.1678 Coin Trade (Multiple)
|
| コンテスト | |
| ユーザー |
keijak
|
| 提出日時 | 2021-09-13 13:39:21 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 711 ms / 5,000 ms |
| コード長 | 5,538 bytes |
| コンパイル時間 | 2,898 ms |
| コンパイル使用メモリ | 214,944 KB |
| 最終ジャッジ日時 | 2025-01-24 13:35:58 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 56 |
ソースコード
#include <bits/stdc++.h>
#include <atcoder/mincostflow>
#define REP_(i, a_, b_, a, b, ...) \
for (int i = (a), END_##i = (b); i < END_##i; ++i)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(x) std::begin(x), std::end(x)
using i64 = long long;
template<typename T, typename U>
inline bool chmax(T &a, U b) {
return a < b and ((a = std::move(b)), true);
}
template<typename T, typename U>
inline bool chmin(T &a, U b) {
return a > b and ((a = std::move(b)), true);
}
template<typename T>
inline int ssize(const T &a) {
return (int) std::size(a);
}
template<typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &a) {
for (auto &x: a) is >> x;
return is;
}
template<typename T, typename U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &a) {
return os << "(" << a.first << ", " << a.second << ")";
}
template<typename Container>
std::ostream &print_seq(const Container &a, std::string_view sep = " ",
std::string_view ends = "\n",
std::ostream &os = std::cout) {
auto b = std::begin(a), e = std::end(a);
for (auto it = std::begin(a); it != e; ++it) {
if (it != b) os << sep;
os << *it;
}
return os << ends;
}
template<typename T, typename = void>
struct is_iterable : std::false_type {};
template<typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
decltype(std::end(std::declval<T>()))>>
: std::true_type {
};
template<typename T, typename = std::enable_if_t<
is_iterable<T>::value &&
!std::is_same<T, std::string_view>::value &&
!std::is_same<T, std::string>::value>>
std::ostream &operator<<(std::ostream &os, const T &a) {
return print_seq(a, ", ", "", (os << "{")) << "}";
}
void print() { std::cout << "\n"; }
template<class T>
void print(const T &x) {
std::cout << x << "\n";
}
template<typename Head, typename... Tail>
void print(const Head &head, Tail... tail) {
std::cout << head << " ";
print(tail...);
}
struct Input {
template<typename T>
operator T() const {
T x;
std::cin >> x;
return x;
}
} in;
#ifdef MY_DEBUG
#include "debug_dump.hpp"
#else
#define DUMP(...)
#endif
using namespace std;
template<typename CapType, typename CostType>
class MinCostFlowDAG {
public:
using Cat = CapType;
using Cot = CostType;
using pti = pair<Cot, int>;
struct edge {
int to, rev;
Cat cap;
Cot cost;
};
const int V;
const Cot inf;
vector<vector<edge> > G;
vector<Cot> h, dist;
vector<int> deg, ord, prevv, preve;
MinCostFlowDAG(const int node_size) : V(node_size), inf(numeric_limits<Cot>::max()),
G(V), h(V, inf), dist(V), deg(V, 0), prevv(V), preve(V) {}
void add_edge(const int from, const int to, const Cat cap, const Cot cost) {
if (cap == 0) return;
G[from].push_back((edge) {to, (int) G[to].size(), cap, cost});
G[to].push_back((edge) {from, (int) G[from].size() - 1, 0, -cost});
++deg[to];
}
bool tsort() {
queue<int> que;
for (int i = 0; i < V; ++i) {
if (deg[i] == 0) que.push(i);
}
while (!que.empty()) {
const int p = que.front();
que.pop();
ord.push_back(p);
for (auto &e: G[p]) {
if (e.cap > 0 && --deg[e.to] == 0) que.push(e.to);
}
}
return (*max_element(deg.begin(), deg.end()) == 0);
}
void calc_potential(const int s) {
h[s] = 0;
for (const int v: ord) {
if (h[v] == inf) continue;
for (const edge &e: G[v]) {
if (e.cap > 0) h[e.to] = min(h[e.to], h[v] + e.cost);
}
}
}
void Dijkstra(const int s) {
priority_queue<pti, vector<pti>, greater<pti> > que;
fill(dist.begin(), dist.end(), inf);
dist[s] = 0;
que.push(pti(0, s));
while (!que.empty()) {
pti p = que.top();
que.pop();
const int v = p.second;
if (dist[v] < p.first) continue;
for (int i = 0; i < (int) G[v].size(); ++i) {
edge &e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v, preve[e.to] = i;
que.push(pti(dist[e.to], e.to));
}
}
}
}
void update(const int s, const int t, Cat &f, Cot &res) {
for (int i = 0; i < V; i++) {
if (dist[i] != inf) h[i] += dist[i];
}
Cat d = f;
for (int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += h[t] * d;
for (int v = t; v != s; v = prevv[v]) {
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
Cot solve(const int s, const int t, Cat f) {
if (!tsort()) assert(false); // not DAG
calc_potential(s);
Cot res = 0;
while (f > 0) {
Dijkstra(s);
if (dist[t] == inf) return -inf;
update(s, t, f, res);
}
return res;
}
};
auto solve() {
const int n = in, K = in;
vector<i64> a(n);
i64 offset = 0;
vector<tuple<i64, int, int>> edges;
MinCostFlowDAG<int, i64> g(n);
REP(i, n) {
a[i] = in;
int m = in;
REP(j, m) {
int b = in;
--b;
i64 cost = a[b] - a[i];
if (cost < 0) {
g.add_edge(b, i, 1, cost);
}
}
}
REP(i, n - 1) {
g.add_edge(i, i + 1, K, 0);
}
return -g.solve(0, n - 1, K);
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(nullptr);
auto ans = solve();
print(ans);
}
keijak