結果
問題 |
No.1678 Coin Trade (Multiple)
|
ユーザー |
![]() |
提出日時 | 2021-09-13 16:01:49 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 634 ms / 5,000 ms |
コード長 | 5,847 bytes |
コンパイル時間 | 2,759 ms |
コンパイル使用メモリ | 213,224 KB |
最終ジャッジ日時 | 2025-01-24 13:36:40 |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 56 |
ソースコード
#include <bits/stdc++.h> #include <atcoder/mincostflow> #define REP_(i, a_, b_, a, b, ...) \ for (int i = (a), END_##i = (b); i < END_##i; ++i) #define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define ALL(x) std::begin(x), std::end(x) using i64 = long long; template<typename T, typename U> inline bool chmax(T &a, U b) { return a < b and ((a = std::move(b)), true); } template<typename T, typename U> inline bool chmin(T &a, U b) { return a > b and ((a = std::move(b)), true); } template<typename T> inline int ssize(const T &a) { return (int) std::size(a); } template<typename T> std::istream &operator>>(std::istream &is, std::vector<T> &a) { for (auto &x: a) is >> x; return is; } template<typename T, typename U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &a) { return os << "(" << a.first << ", " << a.second << ")"; } template<typename Container> std::ostream &print_seq(const Container &a, std::string_view sep = " ", std::string_view ends = "\n", std::ostream &os = std::cout) { auto b = std::begin(a), e = std::end(a); for (auto it = std::begin(a); it != e; ++it) { if (it != b) os << sep; os << *it; } return os << ends; } template<typename T, typename = void> struct is_iterable : std::false_type {}; template<typename T> struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())), decltype(std::end(std::declval<T>()))>> : std::true_type { }; template<typename T, typename = std::enable_if_t< is_iterable<T>::value && !std::is_same<T, std::string_view>::value && !std::is_same<T, std::string>::value>> std::ostream &operator<<(std::ostream &os, const T &a) { return print_seq(a, ", ", "", (os << "{")) << "}"; } void print() { std::cout << "\n"; } template<class T> void print(const T &x) { std::cout << x << "\n"; } template<typename Head, typename... Tail> void print(const Head &head, Tail... tail) { std::cout << head << " "; print(tail...); } struct Input { template<typename T> operator T() const { T x; std::cin >> x; return x; } } in; #ifdef MY_DEBUG #include "debug_dump.hpp" #else #define DUMP(...) #endif using namespace std; template<typename Cap, typename Cost> class MinCostFlowDAG { public: static constexpr Cost INF = numeric_limits<Cost>::max(); struct Edge { int to, rev; Cap cap; Cost cost; }; const int V; vector<vector<Edge>> G; vector<Cost> h, dist; vector<int> deg, ord, prevv, preve; explicit MinCostFlowDAG(const int node_count) : V(node_count), G(V), h(V, INF), dist(V, 0), deg(V, 0), prevv(V), preve(V) {} void add_edge(const int from, const int to, const Cap cap, const Cost cost) { if (cap == 0) return; G[from].push_back(Edge{to, (int) G[to].size(), cap, cost}); G[to].push_back(Edge{from, (int) G[from].size() - 1, 0, -cost}); ++deg[to]; } std::optional<Cost> flow(const int s, const int t, Cap f) { assert(topological_sort()); // must be a DAG. calc_potential(s); Cost res = 0; while (f > 0) { dijkstra(s); if (dist[t] == INF) return std::nullopt; update(s, t, f, res); } return res; } private: struct DijkstraState { Cost cost; int node; }; friend bool operator>(const DijkstraState &x, const DijkstraState &y) { return x.cost > y.cost; } bool topological_sort() { queue<int> que; for (int i = 0; i < V; ++i) { if (deg[i] == 0) que.push(i); } while (!que.empty()) { const int p = que.front(); que.pop(); ord.push_back(p); for (auto &e: G[p]) { if (e.cap > 0 && --deg[e.to] == 0) que.push(e.to); } } return (*max_element(deg.begin(), deg.end()) == 0); } void calc_potential(const int s) { h[s] = 0; for (const int v: ord) { if (h[v] == INF) continue; for (const Edge &e: G[v]) { if (e.cap > 0) h[e.to] = min(h[e.to], h[v] + e.cost); } } } void dijkstra(const int s) { using Heap = std::priority_queue<DijkstraState, vector<DijkstraState>, greater<DijkstraState>>; Heap heap; fill(dist.begin(), dist.end(), INF); dist[s] = 0; heap.push(DijkstraState{0, s}); while (not heap.empty()) { auto cur = heap.top(); heap.pop(); const int v = cur.node; if (dist[v] < cur.cost) continue; for (int i = 0; i < (int) G[v].size(); ++i) { Edge &e = G[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; heap.push(DijkstraState{dist[e.to], e.to}); } } } } void update(const int s, const int t, Cap &f, Cost &res) { for (int i = 0; i < V; i++) { if (dist[i] != INF) h[i] += dist[i]; } Cap d = f; for (int v = t; v != s; v = prevv[v]) { d = min(d, G[prevv[v]][preve[v]].cap); } f -= d; res += h[t] * d; for (int v = t; v != s; v = prevv[v]) { Edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } }; auto solve() { const int n = in, K = in; vector<i64> a(n); MinCostFlowDAG<int, i64> g(n); REP(i, n) { a[i] = in; int m = in; REP(j, m) { int b = in; --b; i64 cost = a[b] - a[i]; if (cost < 0) { g.add_edge(b, i, 1, cost); } } } REP(i, n - 1) { g.add_edge(i, i + 1, K, 0); } auto ans = g.flow(0, n - 1, K); assert(ans.has_value()); return -ans.value(); } int main() { ios_base::sync_with_stdio(false), cin.tie(nullptr); auto ans = solve(); print(ans); }