結果
問題 | No.1289 RNG and OR |
ユーザー | vwxyz |
提出日時 | 2021-09-15 15:02:58 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 511 ms / 2,000 ms |
コード長 | 3,447 bytes |
コンパイル時間 | 168 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 127,360 KB |
最終ジャッジ日時 | 2024-06-28 15:22:38 |
合計ジャッジ時間 | 5,462 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 162 ms
89,088 KB |
testcase_01 | AC | 163 ms
89,344 KB |
testcase_02 | AC | 160 ms
89,216 KB |
testcase_03 | AC | 163 ms
89,216 KB |
testcase_04 | AC | 161 ms
89,344 KB |
testcase_05 | AC | 163 ms
89,344 KB |
testcase_06 | AC | 162 ms
89,088 KB |
testcase_07 | AC | 161 ms
89,088 KB |
testcase_08 | AC | 163 ms
89,216 KB |
testcase_09 | AC | 163 ms
89,088 KB |
testcase_10 | AC | 165 ms
89,600 KB |
testcase_11 | AC | 171 ms
89,728 KB |
testcase_12 | AC | 169 ms
89,600 KB |
testcase_13 | AC | 185 ms
90,368 KB |
testcase_14 | AC | 181 ms
90,112 KB |
testcase_15 | AC | 190 ms
90,368 KB |
testcase_16 | AC | 197 ms
89,984 KB |
testcase_17 | AC | 221 ms
92,288 KB |
testcase_18 | AC | 257 ms
97,920 KB |
testcase_19 | AC | 356 ms
108,800 KB |
testcase_20 | AC | 511 ms
127,360 KB |
ソースコード
import bisect import copy import decimal import fractions import functools import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import degrees, gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=1): self.p=p self.e=e self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] self.cnt=[0]*(N+1) for i in range(1,N+1): ii=i self.cnt[i]=self.cnt[i-1] while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append((self.factorial[-1]*ii)%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Fact(self,N): return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod def Fact_Inve(self,N): if self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu def Pop_Count(N): r=(N&0x5555555555555555)+((N>>1)&0x5555555555555555) r=(r&0x3333333333333333)+((r>>2)&0x3333333333333333) r=(r&0x0f0f0f0f0f0f0f0f)+((r>>4)&0x0f0f0f0f0f0f0f0f) r=(r&0x00ff00ff00ff00ff)+((r>>8)&0x00ff00ff00ff00ff) r=(r&0x0000ffff0000ffff)+((r>>16)&0x0000ffff0000ffff) r=(r&0x00000000ffffffff)+((r>>32)&0x00000000ffffffff) return r N=int(readline()) mod=998244353 MD=MOD(mod) A=list(map(int,readline().split())) for bit in range(N): for i in range(1<<N): if not i>>bit&1: A[i^1<<bit]+=A[i] inve=pow(A[-1],mod-2,mod) for i in range(1<<N): A[i]*=inve A[i]%=mod ans=0 for i in range(1<<N): if Pop_Count(i)%2!=N%2: if A[i]==1: ans-=1 else: ans+=A[i]*pow(1-A[i],mod-2,mod) else: if A[i]==1: ans+=1 else: ans-=A[i]*pow(1-A[i],mod-2,mod) ans%=mod print(ans)