結果

問題 No.1289 RNG and OR
ユーザー vwxyzvwxyz
提出日時 2021-09-15 15:09:25
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 503 ms / 2,000 ms
コード長 3,333 bytes
コンパイル時間 617 ms
コンパイル使用メモリ 81,920 KB
実行使用メモリ 127,232 KB
最終ジャッジ日時 2024-06-28 15:28:17
合計ジャッジ時間 5,268 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 155 ms
89,088 KB
testcase_01 AC 156 ms
89,600 KB
testcase_02 AC 156 ms
89,344 KB
testcase_03 AC 155 ms
89,088 KB
testcase_04 AC 156 ms
89,344 KB
testcase_05 AC 158 ms
89,216 KB
testcase_06 AC 158 ms
89,216 KB
testcase_07 AC 157 ms
89,216 KB
testcase_08 AC 155 ms
89,216 KB
testcase_09 AC 156 ms
89,216 KB
testcase_10 AC 160 ms
89,856 KB
testcase_11 AC 161 ms
89,600 KB
testcase_12 AC 166 ms
89,856 KB
testcase_13 AC 178 ms
90,368 KB
testcase_14 AC 178 ms
90,112 KB
testcase_15 AC 184 ms
90,368 KB
testcase_16 AC 193 ms
90,240 KB
testcase_17 AC 213 ms
92,160 KB
testcase_18 AC 254 ms
97,664 KB
testcase_19 AC 334 ms
108,928 KB
testcase_20 AC 503 ms
127,232 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import degrees, gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=1):
self.p=p
self.e=e
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
self.cnt=[0]*(N+1)
for i in range(1,N+1):
ii=i
self.cnt[i]=self.cnt[i-1]
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append((self.factorial[-1]*ii)%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Fact(self,N):
return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod
def Fact_Inve(self,N):
if self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
def Pop_Count(N):
r=(N&0x5555555555555555)+((N>>1)&0x5555555555555555)
r=(r&0x3333333333333333)+((r>>2)&0x3333333333333333)
r=(r&0x0f0f0f0f0f0f0f0f)+((r>>4)&0x0f0f0f0f0f0f0f0f)
r=(r&0x00ff00ff00ff00ff)+((r>>8)&0x00ff00ff00ff00ff)
r=(r&0x0000ffff0000ffff)+((r>>16)&0x0000ffff0000ffff)
r=(r&0x00000000ffffffff)+((r>>32)&0x00000000ffffffff)
return r
N=int(readline())
mod=998244353
MD=MOD(mod)
A=list(map(int,readline().split()))
for bit in range(N):
for i in range(1<<N):
if not i>>bit&1:
A[i^1<<bit]+=A[i]
inve=pow(A[-1],mod-2,mod)
for i in range(1<<N):
A[i]*=inve
A[i]%=mod
ans=1
for i in range(1<<N):
if Pop_Count(i)%2!=N%2:
ans+=A[i]*pow(1-A[i],mod-2,mod)
else:
ans-=A[i]*pow(1-A[i],mod-2,mod)
ans%=mod
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0