結果
| 問題 |
No.1296 OR or NOR
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-09-16 12:07:47 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 2,269 ms / 3,000 ms |
| コード長 | 5,431 bytes |
| コンパイル時間 | 12,818 ms |
| コンパイル使用メモリ | 379,476 KB |
| 実行使用メモリ | 8,320 KB |
| 最終ジャッジ日時 | 2024-06-29 14:19:53 |
| 合計ジャッジ時間 | 27,762 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 33 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
/**
* Segment Tree. This data structure is useful for fast folding on intervals of an array
* whose elements are elements of monoid I. Note that constructing this tree requires the identity
* element of I and the operation of I.
* Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581)
* AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001)
*/
struct SegTree<I, BiOp> {
n: usize,
dat: Vec<I>,
op: BiOp,
e: I,
}
impl<I, BiOp> SegTree<I, BiOp>
where BiOp: Fn(I, I) -> I,
I: Copy {
pub fn new(n_: usize, op: BiOp, e: I) -> Self {
let mut n = 1;
while n < n_ { n *= 2; } // n is a power of 2
SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e}
}
/* ary[k] <- v */
pub fn update(&mut self, idx: usize, v: I) {
let mut k = idx + self.n - 1;
self.dat[k] = v;
while k > 0 {
k = (k - 1) / 2;
self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]);
}
}
/* [a, b) (note: half-inclusive)
* http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */
pub fn query(&self, mut a: usize, mut b: usize) -> I {
let mut left = self.e;
let mut right = self.e;
a += self.n - 1;
b += self.n - 1;
while a < b {
if (a & 1) == 0 {
left = (self.op)(left, self.dat[a]);
}
if (b & 1) == 0 {
right = (self.op)(self.dat[b - 1], right);
}
a = a / 2;
b = (b - 1) / 2;
}
(self.op)(left, right)
}
// Find x in [a, b] s.t. f(range([x, b))) and x is minimum possible,
// or b + 1 if there is no such x.
pub fn binary_search_left<F: Fn(I) -> bool>(
&self, a: usize, b: usize, f: F,
) -> usize {
if !f(self.e) {
return b + 1;
}
let x = self.bsl_inner(a, b, self.e, 0, 0, self.n, &f).0;
std::cmp::max(a, x)
}
fn bsl_inner<F: Fn(I) -> bool>(
&self, a: usize, b: usize, acc: I, k: usize, l: usize, r: usize, f: &F,
) -> (usize, bool, I) {
if r <= a || b <= l {
return (l, true, acc);
}
if a <= l && r <= b {
let val = (self.op)(self.dat[k], acc);
if f(val) {
return (l, true, val);
}
if r - l == 1 {
return (r, false, val);
}
}
assert!(r - l >= 2);
let mid = (r + l) / 2;
let (idx, cont, rv) = self.bsl_inner(a, b, acc, 2 * k + 2, mid, r, f);
if !cont {
return (idx, false, rv);
}
self.bsl_inner(a, b, rv, 2 * k + 1, l, mid, f)
}
}
// Tags: binary-search-on-segtrees, greedy-algorithm
fn main() {
let out = std::io::stdout();
let mut out = BufWriter::new(out.lock());
macro_rules! puts {
($($format:tt)*) => (let _ = write!(out,$($format)*););
}
input! {
n: usize,
a: [i64; n],
q: usize,
b: [i64; q],
}
let mut st = SegTree::new(n, |x, y| x | y, 0i64);
for i in 0..n {
st.update(i, a[i]);
}
let whole = (1i64 << 60) - 1;
for b in b {
let mut targ = b;
let mut rem = whole;
let mut cur = n;
let mut ok = true;
let mut ans = 0;
let last = a[n - 1];
if (last & b) != last {
targ ^= rem;
ans += 1;
if (targ & last) != last {
ok = false;
}
}
while cur > 1 && rem != 0 && ok {
assert_eq!(rem & targ, targ);
let pass = st.binary_search_left(1, cur, |o| ((o & rem) | targ) == targ);
if pass == cur {
ok = false;
break;
}
let o = st.query(pass, cur);
// eprintln!("b = {}, [{}, {}) o = {} ({} <= {})", b, pass - 1, cur, o, targ, rem);
rem &= !o;
targ &= rem;
cur = pass;
if cur != 1 {
targ ^= rem;
ans += 1;
}
}
let fst = a[0];
ok &= targ == (fst & rem) || targ == (!fst & rem);
if targ != (fst & rem) {
ans += 1;
}
puts!("{}\n", if ok { ans } else { -1 });
}
}