結果
| 問題 |
No.137 貯金箱の焦り
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-09-16 23:55:09 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 13,814 bytes |
| コンパイル時間 | 13,329 ms |
| コンパイル使用メモリ | 399,056 KB |
| 実行使用メモリ | 14,296 KB |
| 最終ジャッジ日時 | 2024-06-29 17:17:43 |
| 合計ジャッジ時間 | 20,036 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 9 TLE * 1 -- * 13 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 1_234_567_891;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
// FFT (in-place, verified as NTT only)
// R: Ring + Copy
// Verified by: https://judge.yosupo.jp/submission/53831
// Adopts the technique used in https://judge.yosupo.jp/submission/3153.
mod fft {
use std::ops::*;
// n should be a power of 2. zeta is a primitive n-th root of unity.
// one is unity
// Note that the result is bit-reversed.
pub fn fft<R>(f: &mut [R], zeta: R, one: R)
where R: Copy +
Add<Output = R> +
Sub<Output = R> +
Mul<Output = R> {
let n = f.len();
assert!(n.is_power_of_two());
let mut m = n;
let mut base = zeta;
unsafe {
while m > 2 {
m >>= 1;
let mut r = 0;
while r < n {
let mut w = one;
for s in r..r + m {
let &u = f.get_unchecked(s);
let d = *f.get_unchecked(s + m);
*f.get_unchecked_mut(s) = u + d;
*f.get_unchecked_mut(s + m) = w * (u - d);
w = w * base;
}
r += 2 * m;
}
base = base * base;
}
if m > 1 {
// m = 1
let mut r = 0;
while r < n {
let &u = f.get_unchecked(r);
let d = *f.get_unchecked(r + 1);
*f.get_unchecked_mut(r) = u + d;
*f.get_unchecked_mut(r + 1) = u - d;
r += 2;
}
}
}
}
pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R)
where R: Copy +
Add<Output = R> +
Sub<Output = R> +
Mul<Output = R> {
let n = f.len();
assert!(n.is_power_of_two());
let zeta = zeta_inv; // inverse FFT
let mut zetapow = Vec::with_capacity(20);
{
let mut m = 1;
let mut cur = zeta;
while m < n {
zetapow.push(cur);
cur = cur * cur;
m *= 2;
}
}
let mut m = 1;
unsafe {
if m < n {
zetapow.pop();
let mut r = 0;
while r < n {
let &u = f.get_unchecked(r);
let d = *f.get_unchecked(r + 1);
*f.get_unchecked_mut(r) = u + d;
*f.get_unchecked_mut(r + 1) = u - d;
r += 2;
}
m = 2;
}
while m < n {
let base = zetapow.pop().unwrap();
let mut r = 0;
while r < n {
let mut w = one;
for s in r..r + m {
let &u = f.get_unchecked(s);
let d = *f.get_unchecked(s + m) * w;
*f.get_unchecked_mut(s) = u + d;
*f.get_unchecked_mut(s + m) = u - d;
w = w * base;
}
r += 2 * m;
}
m *= 2;
}
}
}
}
mod arbitrary_mod {
use crate::mod_int;
use crate::fft;
const MOD1: i64 = 1012924417;
const MOD2: i64 = 1224736769;
const MOD3: i64 = 1007681537;
const G1: i64 = 5;
const G2: i64 = 3;
const G3: i64 = 3;
define_mod!(P1, MOD1);
define_mod!(P2, MOD2);
define_mod!(P3, MOD3);
fn zmod(mut a: i64, b: i64) -> i64 {
a %= b;
if a < 0 {
a += b;
}
a
}
fn ext_gcd(mut a: i64, mut b: i64) -> (i64, i64, i64) {
let mut x = 0;
let mut y = 1;
let mut u = 1;
let mut v = 0;
while a != 0 {
let q = b / a;
x -= q * u;
std::mem::swap(&mut x, &mut u);
y -= q * v;
std::mem::swap(&mut y, &mut v);
b -= q * a;
std::mem::swap(&mut b, &mut a);
}
(b, x, y)
}
fn invmod(a: i64, b: i64) -> i64 {
let x = ext_gcd(a, b).1;
zmod(x, b)
}
// This function is ported from http://math314.hateblo.jp/entry/2015/05/07/014908
fn garner(mut mr: Vec<(i64, i64)>, mo: i64) -> i64 {
mr.push((mo, 0));
let mut coffs = vec![1; mr.len()];
let mut constants = vec![0; mr.len()];
for i in 0..mr.len() - 1 {
let v = zmod(mr[i].1 - constants[i], mr[i].0) * invmod(coffs[i], mr[i].0) % mr[i].0;
assert!(v >= 0);
for j in i + 1..mr.len() {
constants[j] += coffs[j] * v % mr[j].0;
constants[j] %= mr[j].0;
coffs[j] = coffs[j] * mr[i].0 % mr[j].0;
}
}
constants[mr.len() - 1]
}
// f *= g, g is destroyed
fn convolution_friendly<P: mod_int::Mod>(a: &[i64], b: &[i64], gen: i64) -> Vec<i64> {
use mod_int::ModInt;
let d = a.len();
let mut f = vec![ModInt::<P>::new(0); d];
let mut g = vec![ModInt::<P>::new(0); d];
for i in 0..d {
f[i] = a[i].into();
g[i] = b[i].into();
}
let zeta = ModInt::new(gen).pow((P::m() - 1) / d as i64);
fft::fft(&mut f, zeta, ModInt::new(1));
fft::fft(&mut g, zeta, ModInt::new(1));
for i in 0..d {
f[i] *= g[i];
}
fft::inv_fft(&mut f, zeta.inv(), ModInt::new(1));
let inv = ModInt::new(d as i64).inv();
let mut ans = vec![0; d];
for i in 0..d {
ans[i] = (f[i] * inv).x;
}
ans
}
pub fn arbmod_convolution(a: &mut [i64], b: &mut [i64], mo: i64)
-> Vec<i64> {
use mod_int::Mod;
let d = a.len();
assert!(d.is_power_of_two());
assert_eq!(d, b.len());
for x in a.iter_mut() {
*x = zmod(*x, mo);
}
for x in b.iter_mut() {
*x = zmod(*x, mo);
}
let x = convolution_friendly::<P1>(&a, &b, G1);
let y = convolution_friendly::<P2>(&a, &b, G2);
let z = convolution_friendly::<P3>(&a, &b, G3);
let mut ret = vec![0; d];
let mut mr = [(0, 0); 3];
for i in 0..d {
mr[0] = (P1::m(), x[i]);
mr[1] = (P2::m(), y[i]);
mr[2] = (P3::m(), z[i]);
ret[i] = garner(mr.to_vec(), mo);
}
ret
}
}
// f *= g, g is destroyed
fn convolution(f: &mut [MInt], g: &[MInt]) {
let mut a = vec![0; f.len()];
let mut b = vec![0; g.len()];
for i in 0..f.len() {
a[i] = f[i].x;
}
for i in 0..g.len() {
b[i] = g[i].x;
}
let ans = arbitrary_mod::arbmod_convolution(&mut a, &mut b, MOD);
for i in 0..f.len() {
f[i] = ans[i].into();
}
}
fn bostan_mori(a: &[MInt], b: &[MInt], mut e: i64) -> MInt {
let n = a.len();
let mut len = 1;
while len <= 2 * n {
len *= 2;
}
assert_eq!(b.len(), n + 1);
let mut a = a.to_vec();
let mut b = b.to_vec();
let mut c = vec![MInt::new(0); len];
let mut d = vec![MInt::new(0); len];
while e > 0 {
for i in 0..2 * n + 1 {
c[i] = 0.into();
}
for i in 0..n + 1 {
d[i] = 0.into();
}
let r = (e % 2) as usize;
for j in 0..n + 1 {
let coef = if j % 2 == 0 { b[j] } else { -b[j] };
d[j] = coef;
}
for j in 0..n {
c[j] = a[j];
}
convolution(&mut c, &d);
for i in 0..n {
a[i] = c[2 * i + r];
}
for i in 0..2 * n {
c[i] = 0.into();
}
for j in 0..n + 1 {
c[j] = b[j];
}
convolution(&mut c, &d);
for i in 0..n + 1 {
b[i] = c[2 * i];
}
e /= 2;
}
a[0] * b[0].inv()
}
// Tags: bostan-mori
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
fn solve() {
input! {
n: usize, m: i64,
a: [usize; n],
}
const W: usize = 25_000;
let mut dp = vec![MInt::new(0); W];
dp[0] = 1.into();
let mut sz = 0;
for a in a {
for j in (0..W - a).rev() {
dp[j + a] = dp[j + a] - dp[j];
}
sz += a;
}
let mut tmp = vec![MInt::new(0); sz];
tmp[0] = 1.into();
println!("{}", bostan_mori(&tmp, &dp[..sz + 1], m));
}