結果
問題 | No.308 素数は通れません |
ユーザー |
|
提出日時 | 2021-09-21 22:12:44 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,401 bytes |
コンパイル時間 | 294 ms |
コンパイル使用メモリ | 12,800 KB |
実行使用メモリ | 11,392 KB |
最終ジャッジ日時 | 2024-07-04 07:09:23 |
合計ジャッジ時間 | 6,637 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 106 WA * 1 |
ソースコード
from collections import deque import math import random prime=[1]*1000 prime[0]=0 prime[1]=0 for i in range(2,1000): if prime[i]==0: continue j=i+i while j<1000: prime[j]=0 j+=i N=int(input()) dx=[1,0,-1,0] dy=[0,1,0,-1] def solvenaive(W):#幅Wに対して愚直に H=(N+W-1)//W que=deque() que.append(0) dist=[0]*N dist[0]=1 while que: now=que.popleft() x=now//W y=now%W for i in range(4): nx=x+dx[i] ny=y+dy[i] if(nx<0 or ny<0 or nx>=H or ny>=W): continue if nx*W+ny>N-1: continue if prime[nx*W+ny+1]: continue if dist[nx*W+ny]: continue dist[nx*W+ny]=1 que.append(nx*W+ny) return dist[N-1] if N<=500: for i in range(1,N+1): if solvenaive(i): print(i) exit() def is_prime(n): if n == 1: return False if n == 2: return True for k in range(100): a = random.randint(2, n - 1) if gcd(n, a) != 1: return False if pow(a, n - 1, n) != 1: return False return True def gcd(a, b): while b > 0: a, b = b, a % b return a if not N%8==1: print(8) else: if not is_prime(N-8): print(8) else: print(14)