結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
mkawa2
|
| 提出日時 | 2021-09-23 00:16:13 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
AC
|
| 実行時間 | 490 ms / 5,000 ms |
| コード長 | 1,702 bytes |
| コンパイル時間 | 81 ms |
| コンパイル使用メモリ | 12,800 KB |
| 実行使用メモリ | 57,856 KB |
| 最終ジャッジ日時 | 2024-07-05 09:21:45 |
| 合計ジャッジ時間 | 8,748 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
import sys
# sys.setrecursionlimit(200005)
int1 = lambda x: int(x)-1
p2D = lambda x: print(*x, sep="\n")
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()
dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
inf = 10**16
# md = 998244353
md = 10**9+7
def dot(aa, bb):
h = len(aa)
w = len(bb[0])
res = [[0]*w for _ in range(h)]
for i, row in enumerate(aa):
for j, col in enumerate(zip(*bb)):
v = 0
# for a, b in zip(row, col): v += a*b
# res[i][j] = v%md
for a, b in zip(row, col): v += a*b%md
res[i][j] = v%md
return res
def matpow(mat, e):
n = len(mat)
res = [[1 if i == j else 0 for j in range(n)] for i in range(n)]
while e:
if e & 1: res = dot(res, mat)
mat = dot(mat, mat)
e >>= 1
return res
def solve1():
s = sum(aa)%md
for _ in range(k-n):
aa.append(s)
s = s*2-aa[-n-1]
s %= md
s = 0
for a in aa[:k]:
s += a
s %= md
print(aa[k-1], s)
def solve2():
mat = [[0]*(n-1)+[1]*2 for _ in range(n+1)]
for i in range(1, n): mat[i][i-1] = 1
mat[n][n-1] = 0
aa.append(sum(aa))
mat = matpow(mat, k-n)
ans = dot([aa], mat)
print(ans[0][-2], ans[0][-1])
n, k = LI()
aa = LI()
if k <= 10**6:
solve1()
else:
solve2()
mkawa2