結果
問題 | No.1774 Love Triangle (Hard) |
ユーザー | hitonanode |
提出日時 | 2021-09-23 11:13:16 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 7,103 ms / 8,000 ms |
コード長 | 26,865 bytes |
コンパイル時間 | 3,499 ms |
コンパイル使用メモリ | 221,464 KB |
実行使用メモリ | 43,160 KB |
最終ジャッジ日時 | 2024-07-26 21:08:52 |
合計ジャッジ時間 | 512,004 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 5 ms
6,944 KB |
testcase_03 | AC | 35 ms
18,204 KB |
testcase_04 | AC | 4 ms
5,376 KB |
testcase_05 | AC | 6 ms
5,376 KB |
testcase_06 | AC | 3 ms
5,376 KB |
testcase_07 | AC | 64 ms
32,556 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 69 ms
32,408 KB |
testcase_12 | AC | 4,577 ms
39,696 KB |
testcase_13 | AC | 3,083 ms
15,108 KB |
testcase_14 | AC | 166 ms
11,552 KB |
testcase_15 | AC | 2,227 ms
10,132 KB |
testcase_16 | AC | 512 ms
6,944 KB |
testcase_17 | AC | 48 ms
5,376 KB |
testcase_18 | AC | 2,793 ms
37,872 KB |
testcase_19 | AC | 166 ms
33,160 KB |
testcase_20 | AC | 233 ms
5,376 KB |
testcase_21 | AC | 136 ms
6,940 KB |
testcase_22 | AC | 6,650 ms
40,924 KB |
testcase_23 | AC | 6,755 ms
42,036 KB |
testcase_24 | AC | 6,892 ms
41,128 KB |
testcase_25 | AC | 6,708 ms
41,896 KB |
testcase_26 | AC | 6,819 ms
40,988 KB |
testcase_27 | AC | 6,924 ms
40,904 KB |
testcase_28 | AC | 6,893 ms
40,888 KB |
testcase_29 | AC | 6,930 ms
42,052 KB |
testcase_30 | AC | 6,996 ms
42,264 KB |
testcase_31 | AC | 6,811 ms
41,120 KB |
testcase_32 | AC | 6,866 ms
40,976 KB |
testcase_33 | AC | 6,915 ms
42,052 KB |
testcase_34 | AC | 6,911 ms
41,136 KB |
testcase_35 | AC | 6,891 ms
15,296 KB |
testcase_36 | AC | 6,663 ms
40,780 KB |
testcase_37 | AC | 6,947 ms
41,028 KB |
testcase_38 | AC | 6,744 ms
41,900 KB |
testcase_39 | AC | 6,814 ms
40,912 KB |
testcase_40 | AC | 6,930 ms
41,040 KB |
testcase_41 | AC | 6,966 ms
42,824 KB |
testcase_42 | AC | 7,037 ms
41,112 KB |
testcase_43 | AC | 7,015 ms
26,896 KB |
testcase_44 | AC | 6,991 ms
42,140 KB |
testcase_45 | AC | 7,085 ms
26,776 KB |
testcase_46 | AC | 7,036 ms
27,928 KB |
testcase_47 | AC | 7,008 ms
41,192 KB |
testcase_48 | AC | 7,032 ms
41,228 KB |
testcase_49 | AC | 7,063 ms
41,096 KB |
testcase_50 | AC | 6,992 ms
40,972 KB |
testcase_51 | AC | 7,006 ms
41,228 KB |
testcase_52 | AC | 7,008 ms
41,020 KB |
testcase_53 | AC | 7,015 ms
41,224 KB |
testcase_54 | AC | 7,007 ms
42,144 KB |
testcase_55 | AC | 7,008 ms
42,016 KB |
testcase_56 | AC | 7,003 ms
42,140 KB |
testcase_57 | AC | 7,033 ms
41,100 KB |
testcase_58 | AC | 7,049 ms
41,228 KB |
testcase_59 | AC | 7,023 ms
41,100 KB |
testcase_60 | AC | 7,094 ms
43,032 KB |
testcase_61 | AC | 7,023 ms
41,096 KB |
testcase_62 | AC | 7,065 ms
41,100 KB |
testcase_63 | AC | 7,103 ms
42,144 KB |
testcase_64 | AC | 6,806 ms
41,024 KB |
testcase_65 | AC | 7,007 ms
41,100 KB |
testcase_66 | AC | 7,009 ms
42,908 KB |
testcase_67 | AC | 6,720 ms
40,964 KB |
testcase_68 | AC | 6,987 ms
42,256 KB |
testcase_69 | AC | 6,962 ms
41,096 KB |
testcase_70 | AC | 6,751 ms
40,772 KB |
testcase_71 | AC | 7,044 ms
15,376 KB |
testcase_72 | AC | 7,003 ms
42,140 KB |
testcase_73 | AC | 6,985 ms
27,784 KB |
testcase_74 | AC | 7,015 ms
41,100 KB |
testcase_75 | AC | 7,005 ms
43,036 KB |
testcase_76 | AC | 6,817 ms
20,488 KB |
testcase_77 | AC | 7,039 ms
41,104 KB |
testcase_78 | AC | 7,018 ms
43,160 KB |
testcase_79 | AC | 6,722 ms
40,940 KB |
testcase_80 | AC | 7,054 ms
42,140 KB |
testcase_81 | AC | 7,041 ms
27,804 KB |
testcase_82 | AC | 6,927 ms
40,832 KB |
testcase_83 | AC | 6,766 ms
27,568 KB |
testcase_84 | AC | 6,723 ms
41,840 KB |
testcase_85 | AC | 6,763 ms
40,848 KB |
testcase_86 | AC | 6,765 ms
26,676 KB |
testcase_87 | AC | 7,075 ms
42,268 KB |
testcase_88 | AC | 6,894 ms
41,092 KB |
testcase_89 | AC | 6,895 ms
42,132 KB |
testcase_90 | AC | 6,915 ms
41,228 KB |
testcase_91 | AC | 6,566 ms
28,500 KB |
testcase_92 | AC | 6,576 ms
41,968 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr) #else #define dbg(x) (x) #define dbgif(cond, x) 0 #endif template <int md> struct ModInt { #if __cplusplus >= 201402L #define MDCONST constexpr #else #define MDCONST #endif using lint = long long; MDCONST static int mod() { return md; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&]() { std::set<int> fac; int v = md - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < md; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).pow((md - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val; MDCONST ModInt() : val(0) {} MDCONST ModInt &_setval(lint v) { return val = (v >= md ? v - md : v), *this; } MDCONST ModInt(lint v) { _setval(v % md + md); } MDCONST explicit operator bool() const { return val != 0; } MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); } MDCONST ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + md); } MDCONST ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % md); } MDCONST ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % md); } MDCONST ModInt operator-() const { return ModInt()._setval(md - val); } MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; } MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; } MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; } MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend MDCONST ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % md + x.val); } friend MDCONST ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % md - x.val + md); } friend MDCONST ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.val % md); } friend MDCONST ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.inv() % md); } MDCONST bool operator==(const ModInt &x) const { return val == x.val; } MDCONST bool operator!=(const ModInt &x) const { return val != x.val; } MDCONST bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T> friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; return is >> t, x = ModInt(t), is; } MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val; } MDCONST ModInt pow(lint n) const { ModInt ans = 1, tmp = *this; while (n) { if (n & 1) ans *= tmp; tmp *= tmp, n >>= 1; } return ans; } static std::vector<ModInt> facs, facinvs, invs; MDCONST static void _precalculation(int N) { int l0 = facs.size(); if (N > md) N = md; if (N <= l0) return; facs.resize(N), facinvs.resize(N), invs.resize(N); for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i; facinvs[N - 1] = facs.back().pow(md - 2); for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1); for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1]; } MDCONST lint inv() const { if (this->val < std::min(md >> 1, 1 << 21)) { while (this->val >= int(facs.size())) _precalculation(facs.size() * 2); return invs[this->val].val; } else { return this->pow(md - 2).val; } } MDCONST ModInt fac() const { while (this->val >= int(facs.size())) _precalculation(facs.size() * 2); return facs[this->val]; } MDCONST ModInt facinv() const { while (this->val >= int(facs.size())) _precalculation(facs.size() * 2); return facinvs[this->val]; } MDCONST ModInt doublefac() const { lint k = (this->val + 1) / 2; return (this->val & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()) : ModInt(k).fac() * ModInt(2).pow(k); } MDCONST ModInt nCr(const ModInt &r) const { return (this->val < r.val) ? 0 : this->fac() * (*this - r).facinv() * r.facinv(); } MDCONST ModInt nPr(const ModInt &r) const { return (this->val < r.val) ? 0 : this->fac() * (*this - r).facinv(); } ModInt sqrt() const { if (val == 0) return 0; if (md == 2) return val; if (pow((md - 1) / 2) != 1) return 0; ModInt b = 1; while (b.pow((md - 1) / 2) == 1) b += 1; int e = 0, m = md - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = pow((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.pow(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val, md - x.val)); } }; template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0}; // using mint = ModInt<1000000007>; using mint = ModInt<998244853>; template <typename T> struct matrix { int H, W; std::vector<T> elem; typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; } inline T &at(int i, int j) { return elem[i * W + j]; } inline T get(int i, int j) const { return elem[i * W + j]; } int height() const { return H; } int width() const { return W; } std::vector<std::vector<T>> vecvec() const { std::vector<std::vector<T>> ret(H); for (int i = 0; i < H; i++) { std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i])); } return ret; } operator std::vector<std::vector<T>>() const { return vecvec(); } matrix() = default; matrix(int H, int W) : H(H), W(W), elem(H * W) {} matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) { for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem)); } static matrix Identity(int N) { matrix ret(N, N); for (int i = 0; i < N; i++) ret.at(i, i) = 1; return ret; } matrix operator-() const { matrix ret(H, W); for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i]; return ret; } matrix operator*(const T &v) const { matrix ret = *this; for (auto &x : ret.elem) x *= v; return ret; } matrix operator/(const T &v) const { matrix ret = *this; const T vinv = T(1) / v; for (auto &x : ret.elem) x *= vinv; return ret; } matrix operator+(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i]; return ret; } matrix operator-(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i]; return ret; } matrix operator*(const matrix &r) const { matrix ret(H, r.W); for (int i = 0; i < H; i++) { for (int k = 0; k < W; k++) { for (int j = 0; j < r.W; j++) ret.at(i, j) += this->get(i, k) * r.get(k, j); } } return ret; } matrix &operator*=(const T &v) { return *this = *this * v; } matrix &operator/=(const T &v) { return *this = *this / v; } matrix &operator+=(const matrix &r) { return *this = *this + r; } matrix &operator-=(const matrix &r) { return *this = *this - r; } matrix &operator*=(const matrix &r) { return *this = *this * r; } bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; } bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; } bool operator<(const matrix &r) const { return elem < r.elem; } matrix pow(int64_t n) const { matrix ret = Identity(H); bool ret_is_id = true; if (n == 0) return ret; for (int i = 63 - __builtin_clzll(n); i >= 0; i--) { if (!ret_is_id) ret *= ret; if ((n >> i) & 1) ret *= (*this), ret_is_id = false; } return ret; } std::vector<T> pow_vec(int64_t n, std::vector<T> vec) const { matrix x = *this; while (n) { if (n & 1) vec = x * vec; x *= x; n >>= 1; } return vec; }; matrix transpose() const { matrix ret(W, H); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j); } return ret; } // Gauss-Jordan elimination // - Require inverse for every non-zero element // - Complexity: O(H^2 W) template <typename T2, typename std::enable_if<std::is_floating_point<T2>::value>::type * = nullptr> static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept { int piv = -1; for (int j = h; j < mtr.H; j++) { if (mtr.get(j, c) and (piv < 0 or std::abs(mtr.get(j, c)) > std::abs(mtr.get(piv, c)))) piv = j; } return piv; } template <typename T2, typename std::enable_if<!std::is_floating_point<T2>::value>::type * = nullptr> static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept { for (int j = h; j < mtr.H; j++) { if (mtr.get(j, c)) return j; } return -1; } matrix gauss_jordan() const { int c = 0; matrix mtr(*this); std::vector<int> ws; ws.reserve(W); for (int h = 0; h < H; h++) { if (c == W) break; int piv = choose_pivot(mtr, h, c); if (piv == -1) { c++; h--; continue; } if (h != piv) { for (int w = 0; w < W; w++) { std::swap(mtr[piv][w], mtr[h][w]); mtr.at(piv, w) *= -1; // To preserve sign of determinant } } ws.clear(); for (int w = c; w < W; w++) { if (mtr.at(h, w) != 0) ws.emplace_back(w); } const T hcinv = T(1) / mtr.at(h, c); for (int hh = 0; hh < H; hh++) if (hh != h) { const T coeff = mtr.at(hh, c) * hcinv; for (auto w : ws) mtr.at(hh, w) -= mtr.at(h, w) * coeff; mtr.at(hh, c) = 0; } c++; } return mtr; } int rank_of_gauss_jordan() const { for (int i = H * W - 1; i >= 0; i--) { if (elem[i]) return i / W + 1; } return 0; } T determinant_of_upper_triangle() const { T ret = 1; for (int i = 0; i < H; i++) ret *= get(i, i); return ret; } int inverse() { assert(H == W); std::vector<std::vector<T>> ret = Identity(H), tmp = *this; int rank = 0; for (int i = 0; i < H; i++) { int ti = i; while (ti < H and tmp[ti][i] == 0) ti++; if (ti == H) { continue; } else { rank++; } ret[i].swap(ret[ti]), tmp[i].swap(tmp[ti]); T inv = T(1) / tmp[i][i]; for (int j = 0; j < W; j++) ret[i][j] *= inv; for (int j = i + 1; j < W; j++) tmp[i][j] *= inv; for (int h = 0; h < H; h++) { if (i == h) continue; const T c = -tmp[h][i]; for (int j = 0; j < W; j++) ret[h][j] += ret[i][j] * c; for (int j = i + 1; j < W; j++) tmp[h][j] += tmp[i][j] * c; } } *this = ret; return rank; } friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) { assert(m.W == int(v.size())); std::vector<T> ret(m.H); for (int i = 0; i < m.H; i++) { for (int j = 0; j < m.W; j++) ret[i] += m.get(i, j) * v[j]; } return ret; } friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) { assert(int(v.size()) == m.H); std::vector<T> ret(m.W); for (int i = 0; i < m.H; i++) { for (int j = 0; j < m.W; j++) ret[j] += v[i] * m.get(i, j); } return ret; } std::vector<T> prod(const std::vector<T> &v) const { return (*this) * v; } std::vector<T> prod_left(const std::vector<T> &v) const { return v * (*this); } friend std::ostream &operator<<(std::ostream &os, const matrix &x) { os << "[(" << x.H << " * " << x.W << " matrix)"; os << "\n[column sums: "; for (int j = 0; j < x.W; j++) { T s = 0; for (int i = 0; i < x.H; i++) s += x.get(i, j); os << s << ","; } os << "]"; for (int i = 0; i < x.H; i++) { os << "\n["; for (int j = 0; j < x.W; j++) os << x.get(i, j) << ","; os << "]"; } os << "]\n"; return os; } friend std::istream &operator>>(std::istream &is, matrix &x) { for (auto &v : x.elem) is >> v; return is; } }; template <class ModInt> std::vector<int> linear_matroid_parity(const std::vector<std::pair<std::vector<ModInt>, std::vector<ModInt>>> &bcs) { if (bcs.empty()) return {}; const int r = bcs[0].first.size(), m = bcs.size(), r2 = (r + 1) / 2; std::mt19937 mt(std::chrono::steady_clock::now().time_since_epoch().count()); std::uniform_int_distribution<int> d(0, ModInt::mod() - 1); auto gen_random_vector = [&]() -> std::vector<ModInt> { std::vector<ModInt> v(r2 * 2); for (int i = 0; i < r2 * 2; i++) v[i] = d(mt); return v; }; std::vector<ModInt> x(m); using Vec = std::vector<ModInt>; std::vector<std::pair<Vec, Vec>> bcadd(r2 * 2); matrix<ModInt> Y, Yinv; // r2 * r2 matrices int rankY = -1; while (rankY < r2 * 2) { Y = matrix<ModInt>(r2 * 2, r2 * 2); for (int i = 0; i < m; i++) { x[i] = d(mt); const auto &b = bcs[i].first, &c = bcs[i].second; for (int j = 0; j < r; j++) { for (int k = 0; k < r; k++) Y[j][k] += x[i] * (b[j] * c[k] - c[j] * b[k]); } } for (auto &[b, c] : bcadd) { b = gen_random_vector(), c = gen_random_vector(); for (int j = 0; j < r2 * 2; j++) { for (int k = 0; k < r2 * 2; k++) Y[j][k] += b[j] * c[k] - c[j] * b[k]; } } Yinv = Y; rankY = Yinv.inverse(); } // dbg(Yinv); std::vector<std::vector<ModInt>> tmpmat(r2 * 2, std::vector<ModInt>(r2 * 2)); // dbg(xadd); // dbg(Y); int additional_dim = bcadd.size(); for (auto &[b, c] : bcadd) { std::vector<ModInt> Yib = Yinv * b, Yic = Yinv * c; ModInt bYic = std::inner_product(b.begin(), b.end(), Yic.begin(), ModInt(0)); const ModInt v = 1 + bYic; if (v == 0) { // これを消すとランクが落ちてしまう continue; } else { additional_dim--; const auto coeff = 1 / v; for (int j = 0; j < r2 * 2; j++) { for (int k = 0; k < r2 * 2; k++) { tmpmat[j][k] = Yib[j] * Yic[k] - Yic[j] * Yib[k]; } } for (int j = 0; j < r2 * 2; j++) { for (int k = 0; k < r2 * 2; k++) Yinv[j][k] -= tmpmat[j][k] * coeff; } } } // dbg(r2); // dbg(additional_dim); std::vector<int> ret(m); for (int i = m - 1; i >= 0; i--) { ret[i] = r2 - additional_dim; auto b = bcs[i].first, c = bcs[i].second; b.resize(r2 * 2, 0), c.resize(r2 * 2, 0); std::vector<ModInt> Yib = Yinv * b, Yic = Yinv * c; ModInt bYic = std::inner_product(b.begin(), b.end(), Yic.begin(), ModInt(0)); ModInt v = 1 + x[i] * bYic; if (v == 0) { // これを消すとランクが落ちてしまう additional_dim++; { auto b = gen_random_vector(), c = gen_random_vector(); std::vector<ModInt> Yib = Yinv * b, Yic = Yinv * c; ModInt bYic = std::inner_product(b.begin(), b.end(), Yic.begin(), ModInt(0)); const ModInt v = 1 + bYic; const auto coeff = 1 / v; for (int j = 0; j < r2 * 2; j++) { for (int k = 0; k < r2 * 2; k++) tmpmat[j][k] = Yib[j] * Yic[k] - Yic[j] * Yib[k]; } for (int j = 0; j < r2 * 2; j++) { for (int k = 0; k < r2 * 2; k++) Yinv[j][k] -= tmpmat[j][k] * coeff; } } Yib = Yinv * b, Yic = Yinv * c; bYic = std::inner_product(b.begin(), b.end(), Yic.begin(), ModInt(0)); v = 1 + x[i] * bYic; } const auto coeff = x[i] / v; for (int j = 0; j < r2 * 2; j++) { for (int k = 0; k < r2 * 2; k++) { tmpmat[j][k] = Yib[j] * Yic[k] - Yic[j] * Yib[k]; } } for (int j = 0; j < r2 * 2; j++) { for (int k = 0; k < r2 * 2; k++) Yinv[j][k] -= tmpmat[j][k] * coeff; } // dbg(additional_dim); } return ret; } struct rand_int_ { using lint = long long; mt19937 mt; rand_int_() : mt(chrono::steady_clock::now().time_since_epoch().count()) {} lint operator()(lint x) { return this->operator()(0, x); } // [0, x) lint operator()(lint l, lint r) { uniform_int_distribution<lint> d(l, r - 1); return d(mt); } } rnd; // UnionFind Tree (0-indexed), based on size of each disjoint set struct UnionFind { std::vector<int> par, cou; UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); } int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return false; if (cou[x] < cou[y]) std::swap(x, y); par[y] = x, cou[x] += cou[y]; return true; } int count(int x) { return cou[find(x)]; } bool same(int x, int y) { return find(x) == find(y); } }; vector<int> guchoku(int N, vector<pair<pint, pint>> bcs) { const int M = bcs.size(); vector<int> ret(M); FOR(s, 1, 1 << M) { bool good = true; UnionFind uf(N); int last = -1; REP(e, M) { if (!((s >> e) & 1)) continue; chmax(last, e); auto [ab, cd] = bcs[e]; auto [a, b] = ab; auto [c, d] = cd; if (!uf.unite(a, b)) good = false; if (!uf.unite(c, d)) good = false; if (!good) break; } if (good) { chmax(ret[last], __builtin_popcount(s)); } } REP(i, M - 1) chmax(ret[i + 1], ret[i]); return ret; } vector<int> solve(int N, vector<pair<pint, pint>> bcs) { vector<pair<vector<mint>, vector<mint>>> vs; for (auto [ab, cd] : bcs) { auto [a, b] = ab; auto [c, d] = cd; vector<mint> B(N), C(N); B.at(a) += 1; B.at(b) -= 1; C.at(c) += 1; C.at(d) -= 1; vs.emplace_back(B, C); } auto ret1 = linear_matroid_parity<mint>(vs); // REP(t, 1) { // auto ret2 = linear_matroid_parity<mint>(vs); // REP(i, ret2.size()) chmax(ret1[i], ret2[i]); // } return ret1; } void main_() { // int Nmax, Mmax; // cin >> Nmax >> Mmax; const int N = 200, M = 500; vector<mint> b0{0, 0, 0, 0}; vector<mint> c0{0, 0, 1, -1}; vector<mint> d0{1, -1, 0, 0}; dbg(linear_matroid_parity<mint>({{c0, b0}, {c0, d0}})); dbg(linear_matroid_parity<mint>({{c0, d0}})); for (long long ntry = 1;; ntry++) { auto START = std::chrono::system_clock::now(); // int N = rnd(2, Nmax + 1); // int M = rnd(2, Mmax + 1); vector<pair<pint, pint>> edge_pairs; REP(e, M) { edge_pairs.emplace_back(pint(rnd(min(20, N)), rnd(N)), pint(rnd(min(20, N)), rnd(N))); } auto s = solve(N, edge_pairs); int64_t spent_ms = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now() - START).count(); dbg(spent_ms); dbg(s); // auto g = guchoku(N, edge_pairs); // if (s != g) { // dbg(N); // dbg(edge_pairs); // // dbg(g); // dbg(s); // } if (__builtin_popcountll(ntry) == 1) { dbg(ntry); } } } int main() { int N, M; cin >> N >> M; vector<pair<pint, pint>> edges; while (M--) { int u, v, w; cin >> u >> v >> w; u--, v--, w--; edges.push_back({{u, w}, {v, w}}); } auto ret = solve(N, edges); for (auto x : ret) cout << x << '\n'; }