結果
問題 | No.1302 Random Tree Score |
ユーザー |
![]() |
提出日時 | 2021-09-24 12:24:58 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 440 ms / 3,000 ms |
コード長 | 16,142 bytes |
コンパイル時間 | 3,240 ms |
コンパイル使用メモリ | 214,428 KB |
最終ジャッジ日時 | 2025-01-24 16:33:22 |
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 14 |
ソースコード
//#pragma GCC optimize("Ofast")//#pragma GCC optimize("unroll-loops")#include <bits/stdc++.h>using namespace std;using ll = long long;using ull = unsigned long long;using pii = pair<int, int>;template <class T>using V = vector<T>;template <class T>using VV = V<V<T>>;template <class T>V<T> make_vec(size_t a) {return V<T>(a);}template <class T, class... Ts>auto make_vec(size_t a, Ts... ts) {return V<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));}#define pb push_back#define eb emplace_back#define mp make_pair#define fi first#define se second#define rep(i, n) rep2(i, 0, n)#define rep2(i, m, n) for (int i = m; i < (n); i++)#define per(i, b) per2(i, 0, b)#define per2(i, a, b) for (int i = int(b) - 1; i >= int(a); i--)#define ALL(c) (c).begin(), (c).end()#define SZ(x) ((int)(x).size())constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); }template <class T, class U>void chmin(T& t, const U& u) {if (t > u) t = u;}template <class T, class U>void chmax(T& t, const U& u) {if (t < u) t = u;}template <class T>void mkuni(vector<T>& v) {sort(ALL(v));v.erase(unique(ALL(v)), end(v));}template <class T, class U>ostream& operator<<(ostream& os, const pair<T, U>& p) {os << "(" << p.first << "," << p.second << ")";return os;}template <class T>ostream& operator<<(ostream& os, const vector<T>& v) {os << "{";rep(i, v.size()) {if (i) os << ",";os << v[i];}os << "}";return os;}#ifdef LOCALvoid debug_out() { cerr << endl; }template <typename Head, typename... Tail>void debug_out(Head H, Tail... T) {cerr << " " << H;debug_out(T...);}#define debug(...) \cerr << __LINE__ << " [" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)#define dump(x) cerr << __LINE__ << " " << #x << " = " << (x) << endl#else#define debug(...) (void(0))#define dump(x) (void(0))#endiftemplate <class T>void scan(vector<T>& v, T offset = T(0)) {for (auto& x : v) {cin >> x;x += offset;}}template <class T>void print(T x, int suc = 1) {cout << x;if (suc == 1)cout << "\n";else if (suc == 2)cout << " ";}template <class T>void print(const vector<T>& v, int suc = 1) {for (int i = 0; i < v.size(); ++i)print(v[i], i == int(v.size()) - 1 ? suc : 2);}template <unsigned int MOD>struct ModInt {using uint = unsigned int;using ull = unsigned long long;using M = ModInt;uint v;ModInt(ll _v = 0) { set_norm(_v % MOD + MOD); }M& set_norm(uint _v) { //[0, MOD * 2)->[0, MOD)v = (_v < MOD) ? _v : _v - MOD;return *this;}explicit operator bool() const { return v != 0; }explicit operator int() const { return v; }M operator+(const M& a) const { return M().set_norm(v + a.v); }M operator-(const M& a) const { return M().set_norm(v + MOD - a.v); }M operator*(const M& a) const { return M().set_norm(ull(v) * a.v % MOD); }M operator/(const M& a) const { return *this * a.inv(); }M& operator+=(const M& a) { return *this = *this + a; }M& operator-=(const M& a) { return *this = *this - a; }M& operator*=(const M& a) { return *this = *this * a; }M& operator/=(const M& a) { return *this = *this / a; }M operator-() const { return M() - *this; }M& operator++(int) { return *this = *this + 1; }M& operator--(int) { return *this = *this - 1; }M pow(ll n) const {if (n < 0) return inv().pow(-n);M x = *this, res = 1;while (n) {if (n & 1) res *= x;x *= x;n >>= 1;}return res;}M inv() const {ll a = v, b = MOD, p = 1, q = 0, t;while (b != 0) {t = a / b;swap(a -= t * b, b);swap(p -= t * q, q);}return M(p);}friend ostream& operator<<(ostream& os, const M& a) { return os << a.v; }friend istream& operator>>(istream& in, M& x) {ll v_;in >> v_;x = M(v_);return in;}bool operator<(const M& r) const { return v < r.v; }bool operator>(const M& r) const { return v < *this; }bool operator<=(const M& r) const { return !(r < *this); }bool operator>=(const M& r) const { return !(*this < r); }bool operator==(const M& a) const { return v == a.v; }bool operator!=(const M& a) const { return v != a.v; }static uint get_mod() { return MOD; }};// using Mint = ModInt<1000000007>;using Mint = ModInt<998244353>;/*** @docs docs/ntt.md*/template <class D>struct NumberTheoreticTransform {D root;V<D> roots = {0, 1};V<int> rev = {0, 1};int base = 1, max_base = -1;void init() {int mod = D::get_mod();int tmp = mod - 1;max_base = 0;while (tmp % 2 == 0) {tmp /= 2;max_base++;}root = 2;while (true) {if (root.pow(1 << max_base).v == 1) {if (root.pow(1 << (max_base - 1)).v != 1) {break;}}root++;}}void ensure_base(int nbase) {if (max_base == -1) init();if (nbase <= base) return;assert(nbase <= max_base);rev.resize(1 << nbase);for (int i = 0; i < (1 << nbase); ++i) {rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));}roots.resize(1 << nbase);while (base < nbase) {D z = root.pow(1 << (max_base - 1 - base));for (int i = 1 << (base - 1); i < (1 << base); ++i) {roots[i << 1] = roots[i];roots[(i << 1) + 1] = roots[i] * z;}++base;}}void ntt(V<D>& a, bool inv = false) {int n = a.size();// assert((n & (n - 1)) == 0);int zeros = __builtin_ctz(n);ensure_base(zeros);int shift = base - zeros;for (int i = 0; i < n; i++) {if (i < (rev[i] >> shift)) {swap(a[i], a[rev[i] >> shift]);}}for (int k = 1; k < n; k <<= 1) {for (int i = 0; i < n; i += 2 * k) {for (int j = 0; j < k; j++) {D x = a[i + j];D y = a[i + j + k] * roots[j + k];a[i + j] = x + y;a[i + j + k] = x - y;}}}int v = D(n).inv().v;if (inv) {reverse(a.begin() + 1, a.end());for (int i = 0; i < n; i++) {a[i] *= v;}}}V<D> mul(V<D> a, V<D> b) {if (a.size() == 0 && b.size() == 0) return {};int s = a.size() + b.size() - 1;int nbase = 1;while ((1 << nbase) < s) nbase++;int sz = 1 << nbase;a.resize(sz);b.resize(sz);ntt(a);ntt(b);for (int i = 0; i < sz; i++) {a[i] *= b[i];}ntt(a, true);a.resize(s);return a;}};V<Mint> fact, ifact, inv;void init() {const int maxv = 1000010;fact.resize(maxv);ifact.resize(maxv);inv.resize(maxv);fact[0] = 1;for (int i = 1; i < maxv; ++i) {fact[i] = fact[i - 1] * i;}ifact[maxv - 1] = fact[maxv - 1].inv();for (int i = maxv - 2; i >= 0; --i) {ifact[i] = ifact[i + 1] * (i + 1);}for (int i = 1; i < maxv; ++i) {inv[i] = ifact[i] * fact[i - 1];}}Mint comb(int n, int r) {if (n < 0 || r < 0 || r > n) return Mint(0);return fact[n] * ifact[r] * ifact[n - r];}// O(k)Mint comb_slow(ll n, ll k) {Mint res = 1;for (int i = 0; i < k; ++i) {res = res * (n - i) * inv[i + 1];}return res;}// line up// a 'o' + b 'x'Mint comb2(int a, int b) {if (a < 0 || b < 0) return 0;return comb(a + b, a);}// O(p + log_p n)Mint lucas(ll n, ll k, int p) {if (n < 0 || k < 0 || k > n) return Mint(0);Mint res = 1;while (n > 0) {res *= comb(n % p, k % p);n /= p;k /= p;}return res;}// T : modinttemplate <class T>void ntt_2d(VV<T>& a, bool rev) {if (a.size() == 0 || a[0].size() == 0) return;int h = a.size(), w = a[0].size();NumberTheoreticTransform<T> fft;fft.init();for (auto& v : a) {fft.ntt(v, rev);}rep(j, w) {V<T> vh(h);rep(i, h) { vh[i] = a[i][j]; }fft.ntt(vh, rev);rep(i, h) { a[i][j] = vh[i]; }}}// depends on FFT libs// basically use with ModIntNumberTheoreticTransform<Mint> ntt;template <class D>struct Poly : public V<D> {template <class... Args>Poly(Args... args) : V<D>(args...) {}Poly(initializer_list<D> init) : V<D>(init.begin(), init.end()) {}int size() const { return V<D>::size(); }D at(int p) const { return (p < this->size() ? (*this)[p] : D(0)); }// first len termsPoly pref(int len) const {return Poly(this->begin(), this->begin() + min(this->size(), len));}// for polynomial divisionPoly rev() const {Poly res = *this;reverse(res.begin(), res.end());return res;}Poly shiftr(int d) const {int n = max(size() + d, 0);Poly res(n);for (int i = 0; i < size(); ++i) {if (i + d >= 0) {res[i + d] = at(i);}}return res;}Poly operator+(const Poly& r) const {auto n = max(size(), r.size());V<D> tmp(n);for (int i = 0; i < n; ++i) {tmp[i] = at(i) + r.at(i);}return tmp;}Poly operator-(const Poly& r) const {auto n = max(size(), r.size());V<D> tmp(n);for (int i = 0; i < n; ++i) {tmp[i] = at(i) - r.at(i);}return tmp;}// scalarPoly operator*(const D& k) const {int n = size();V<D> tmp(n);for (int i = 0; i < n; ++i) {tmp[i] = at(i) * k;}return tmp;}Poly operator*(const Poly& r) const {Poly a = *this;Poly b = r;auto v = ntt.mul(a, b);return v;}// scalarPoly operator/(const D& k) const { return *this * k.inv(); }Poly operator/(const Poly& r) const {if (size() < r.size()) {return {{}};}int d = size() - r.size() + 1;return (rev().pref(d) * r.rev().inv(d)).pref(d).rev();}Poly operator%(const Poly& r) const {auto res = *this - *this / r * r;while (res.size() && !res.back()) {res.pop_back();}return res;}Poly diff() const {V<D> res(max(0, size() - 1));for (int i = 1; i < size(); ++i) {res[i - 1] = at(i) * i;}return res;}Poly inte() const {V<D> res(size() + 1);for (int i = 0; i < size(); ++i) {res[i + 1] = at(i) / (D)(i + 1);}return res;}// f * f.inv(m) === 1 mod (x^m)// f_0 ^ -1 must existPoly inv(int m) const {Poly res = Poly({D(1) / at(0)});for (int i = 1; i < m; i *= 2) {res = (res * D(2) - res * res * pref(i * 2)).pref(i * 2);}return res.pref(m);}// f_0 = 1 must holdPoly log(int n) const {auto f = pref(n);return (f.diff() * f.inv(n - 1)).pref(n - 1).inte();}// f_0 = 0 must holdPoly exp(int n) const {auto h = diff();Poly f({1}), g({1});for (int m = 1; m < n; m *= 2) {g = (g * D(2) - f * g * g).pref(m);auto q = h.pref(m - 1);auto w = (q + g * (f.diff() - f * q)).pref(m * 2 - 1);f = (f + f * (*this - w.inte()).pref(m * 2)).pref(m * 2);}return f.pref(n);}// be careful when k = 0Poly pow(int n, ll k) const { return (log(n) * (D)k).exp(n); }// f_0 = 1 must hold (use it with modular sqrt)// CF250EPoly sqrt(int n) const {Poly f = pref(n);Poly g({1});for (int i = 1; i < n; i *= 2) {g = (g + f.pref(i * 2) * g.inv(i * 2)) * D(2).inv();}return g.pref(n);}D eval(D x) const {D res = 0, c = 1;for (auto a : *this) {res += a * c;c *= x;}return res;}Poly powmod(ll k, const Poly& md) {auto v = *this % md;Poly res{1};while (k) {if (k & 1) {res = res * v % md;}v = v * v % md;k /= 2;}return res;}Poly& operator+=(const Poly& r) { return *this = *this + r; }Poly& operator-=(const Poly& r) { return *this = *this - r; }Poly& operator*=(const D& r) { return *this = *this * r; }Poly& operator*=(const Poly& r) { return *this = *this * r; }Poly& operator/=(const Poly& r) { return *this = *this / r; }Poly& operator/=(const D& r) { return *this = *this / r; }Poly& operator%=(const Poly& r) { return *this = *this % r; }friend ostream& operator<<(ostream& os, const Poly& pl) {if (pl.size() == 0) return os << "0";for (int i = 0; i < pl.size(); ++i) {if (pl[i]) {os << pl[i] << "x^" << i;if (i + 1 != pl.size()) os << ",";}}return os;}explicit operator bool() const {bool f = false;for (int i = 0; i < size(); ++i) {if (at(i)) {f = true;}}return f;}};// calculate characteristic polynomial// c_0 * s_i + c_1 * s_{i+1} + ... + c_k * s_{i+k} = 0// c_k = -1template <class T>Poly<T> berlekamp_massey(const V<T>& s) {int n = int(s.size());V<T> b = {T(-1)}, c = {T(-1)};T y = Mint(1);for (int ed = 1; ed <= n; ed++) {int l = int(c.size()), m = int(b.size());T x = 0;for (int i = 0; i < l; i++) {x += c[i] * s[ed - l + i];}b.push_back(0);m++;if (!x) {continue;}T freq = x / y;if (l < m) {auto tmp = c;c.insert(begin(c), m - l, Mint(0));for (int i = 0; i < m; i++) {c[m - 1 - i] -= freq * b[m - 1 - i];}b = tmp;y = x;} else {for (int i = 0; i < m; i++) {c[l - 1 - i] -= freq * b[m - 1 - i];}}}return c;}// HUPC 2020 day3 K// calculate vec[0] * vec[1] * ...// deg(result) must be boundedtemplate <class T>Poly<T> prod(const V<Poly<T>>& vec) {auto comp = [](const auto& a, const auto& b) -> bool {return a.size() > b.size();};priority_queue<Poly<T>, V<Poly<T>>, decltype(comp)> que(comp);que.push(Poly<T>{1});for (auto& pl : vec) que.push(pl);while (que.size() > 1) {auto va = que.top();que.pop();auto vb = que.top();que.pop();que.push(va * vb);}return que.top();}// expand f(x + c)// require factorialtemplate <class T>Poly<T> taylor_shift(const Poly<T>& f, ll c) {using P = Poly<T>;int n = f.size();T powc = 1;P p(n), q(n);rep(i, n) {p[i] = f[i] * fact[i];q[n - 1 - i] = powc * ifact[i];powc *= c;}p = p * q;rep(i, n) q[i] = p[n - 1 + i] * ifact[i];return q;}int main() {cin.tie(nullptr);ios::sync_with_stdio(false);init();ntt.init();int N;cin >> N;Poly<Mint> f(N + 1);rep(i, N) f[i] = ifact[i] * (i + 1);f = f.pow(N, N);Mint ans = f[N - 2] * fact[N - 2] / Mint(N).pow(N - 2);cout << ans << endl;return 0;}