結果
問題 | No.1690 Power Grid |
ユーザー | kyon2326 |
提出日時 | 2021-09-24 23:27:01 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 136 ms / 3,000 ms |
コード長 | 22,849 bytes |
コンパイル時間 | 3,475 ms |
コンパイル使用メモリ | 281,384 KB |
実行使用メモリ | 5,632 KB |
最終ジャッジ日時 | 2024-07-05 11:34:47 |
合計ジャッジ時間 | 6,315 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 133 ms
5,632 KB |
testcase_07 | AC | 130 ms
5,632 KB |
testcase_08 | AC | 133 ms
5,504 KB |
testcase_09 | AC | 132 ms
5,632 KB |
testcase_10 | AC | 132 ms
5,504 KB |
testcase_11 | AC | 133 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 15 ms
5,376 KB |
testcase_15 | AC | 133 ms
5,632 KB |
testcase_16 | AC | 134 ms
5,504 KB |
testcase_17 | AC | 63 ms
5,376 KB |
testcase_18 | AC | 30 ms
5,376 KB |
testcase_19 | AC | 132 ms
5,376 KB |
testcase_20 | AC | 133 ms
5,504 KB |
testcase_21 | AC | 134 ms
5,632 KB |
testcase_22 | AC | 134 ms
5,504 KB |
testcase_23 | AC | 132 ms
5,504 KB |
testcase_24 | AC | 132 ms
5,504 KB |
testcase_25 | AC | 134 ms
5,376 KB |
testcase_26 | AC | 136 ms
5,632 KB |
testcase_27 | AC | 2 ms
5,376 KB |
コンパイルメッセージ
main.cpp:177:31: warning: 'template<class _Category, class _Tp, class _Distance, class _Pointer, class _Reference> struct std::iterator' is deprecated [-Wdeprecated-declarations] 177 | class iterator : std::iterator<std::forward_iterator_tag, std::tuple<decltype(*std::declval<T>().begin())...>> { | ^~~~~~~~ In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_algobase.h:65, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/specfun.h:45, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/cmath:1935, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/x86_64-pc-linux-gnu/bits/stdc++.h:41, from main.cpp:2: /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_iterator_base_types.h:127:34: note: declared here 127 | struct _GLIBCXX17_DEPRECATED iterator | ^~~~~~~~
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> #include <bits/extc++.h> using namespace std; /* #include <atcoder/all> using namespace atcoder; */ /* #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> using bll = boost::multiprecision::cpp_int; using bdouble = boost::multiprecision::number<boost::multiprecision::cpp_dec_float<100>>; using namespace boost::multiprecision; */ #if defined(LOCAL_TEST) || defined(LOCAL_DEV) #define BOOST_STACKTRACE_USE_ADDR2LINE #define BOOST_STACKTRACE_ADDR2LINE_LOCATION /usr/local/opt/binutils/bin/addr2line #define _GNU_SOURCE 1 #include <boost/stacktrace.hpp> #endif #ifdef LOCAL_TEST namespace std { template <typename T> class dvector : public std::vector<T> { public: using std::vector<T>::vector; template <typename T_ = T, typename std::enable_if_t<std::is_same_v<T_, bool>, std::nullptr_t> = nullptr> std::vector<bool>::reference operator[](std::size_t n) { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } template <typename T_ = T, typename std::enable_if_t<std::is_same_v<T_, bool>, std::nullptr_t> = nullptr> const T_ operator[](std::size_t n) const { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } template <typename T_ = T, typename std::enable_if_t<!std::is_same_v<T_, bool>, std::nullptr_t> = nullptr> T_& operator[](std::size_t n) { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } template <typename T_ = T, typename std::enable_if_t<!std::is_same_v<T_, bool>, std::nullptr_t> = nullptr> const T_& operator[](std::size_t n) const { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } }; template <typename T, typename Compare = std::less<T>, typename Allocator = std::allocator<T>> class dmultiset : public std::multiset<T,Compare,Allocator> { public: using std::multiset<T,Compare,Allocator>::multiset; const typename std::multiset<T,Compare,Allocator>::iterator erase(const typename std::multiset<T,Compare,Allocator>::iterator it) { return std::multiset<T,Compare,Allocator>::erase(it); } std::size_t erase([[maybe_unused]] const T& x) { std::cerr << boost::stacktrace::stacktrace() << '\n'; assert(false); } std::size_t erase_all_elements(const T& x) { return std::multiset<T,Compare,Allocator>::erase(x); } }; } #define vector dvector #define multiset dmultiset class SIGFPE_exception : std::exception {}; class SIGSEGV_exception : std::exception {}; void catch_SIGFPE([[maybe_unused]] int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGFPE_exception(); } void catch_SIGSEGV([[maybe_unused]] int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGSEGV_exception(); } signed convertedmain(); signed main() { signal(SIGFPE, catch_SIGFPE); signal(SIGSEGV, catch_SIGSEGV); return convertedmain(); } #define main() convertedmain() #else #define erase_all_elements erase #endif #ifdef LOCAL_DEV template <typename T1, typename T2> std::ostream& operator<<(std::ostream& s, const std::pair<T1, T2>& p) { return s << "(" << p.first << ", " << p.second << ")"; } template <typename T, std::size_t N> std::ostream& operator<<(std::ostream& s, const std::array<T, N>& a) { s << "{ "; for (std::size_t i = 0; i < N; ++i){ s << a[i] << "\t"; } s << "}"; return s; } template <typename T> std::ostream& operator<<(std::ostream& s, const std::set<T>& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; } template <typename T> std::ostream& operator<<(std::ostream& s, const std::multiset<T>& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; } template <typename T1, typename T2> std::ostream& operator<<(std::ostream& s, const std::map<T1, T2>& m) { s << "{\n"; for (auto itr = m.begin(); itr != m.end(); ++itr){ s << "\t" << (*itr).first << " : " << (*itr).second << "\n"; } s << "}"; return s; } template <typename T> std::ostream& operator<<(std::ostream& s, const std::deque<T>& v) { for (std::size_t i = 0; i < v.size(); ++i){ s << v[i]; if (i < v.size() - 1) s << "\t"; } return s; } template <typename T> std::ostream& operator<<(std::ostream& s, const std::vector<T>& v) { for (std::size_t i = 0; i < v.size(); ++i){ s << v[i]; if (i < v.size() - 1) s << "\t"; } return s; } template <typename T> std::ostream& operator<<(std::ostream& s, const std::vector<std::vector<T>>& vv) { s << "\\\n"; for (std::size_t i = 0; i < vv.size(); ++i){ s << vv[i] << "\n"; } return s; } template <typename T, std::size_t N, typename std::enable_if_t<!std::is_same_v<T, char>, std::nullptr_t> = nullptr> std::ostream& operator<<(std::ostream& s, const T (&v)[N]) { for (std::size_t i = 0; i < N; ++i){ s << v[i]; if (i < N - 1) s << "\t"; } return s; } template <typename T, std::size_t N, std::size_t M, typename std::enable_if_t<!std::is_same_v<T, char>, std::nullptr_t> = nullptr> std::ostream& operator<<(std::ostream& s, const T (&vv)[N][M]) { s << "\\\n"; for (std::size_t i = 0; i < N; ++i){ s << vv[i] << "\n"; } return s; } #if __has_include(<ext/pb_ds/assoc_container.hpp>) template <typename Key, typename Compare> std::ostream& operator<<(std::ostream& s, const __gnu_pbds::tree<Key, __gnu_pbds::null_type, Compare, __gnu_pbds::rb_tree_tag, __gnu_pbds::tree_order_statistics_node_update>& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; } template <typename Key, typename T, typename Hash> std::ostream& operator<<(std::ostream& s, const __gnu_pbds::gp_hash_table<Key, T, Hash>& m) { s << "{\n"; for (auto itr = m.begin(); itr != m.end(); ++itr){ s << "\t" << (*itr).first << " : " << (*itr).second << "\n"; } s << "}"; return s; } #endif void debug_impl() { std::cerr << '\n'; } template <typename Head, typename... Tail> void debug_impl(const Head& head, const Tail&... tail) { std::cerr << " " << head << (sizeof...(tail) ? "," : ""); debug_impl(tail...); } #define debug(...) do { std::cerr << ":" << __LINE__ << " (" << #__VA_ARGS__ << ") ="; debug_impl(__VA_ARGS__); } while (false) constexpr inline long long prodlocal([[maybe_unused]] long long prod, [[maybe_unused]] long long local) { return local; } #else #define debug(...) do {} while (false) constexpr inline long long prodlocal([[maybe_unused]] long long prod, [[maybe_unused]] long long local) { return prod; } #endif //#define int long long using ll = long long; //INT_MAX = (1<<31)-1 = 2147483647, INT64_MAX = (1LL<<63)-1 = 9223372036854775807 constexpr ll INF = std::numeric_limits<ll>::max() == INT_MAX ? (ll)1e9 + 7 : (ll)1e18; //constexpr ll MOD = (ll)1e9 + 7; //primitive root = 5 constexpr ll MOD = 998244353; //primitive root = 3 constexpr double EPS = 1e-9; constexpr ll dx[4] = {1, 0, -1, 0}; constexpr ll dy[4] = {0, 1, 0, -1}; constexpr ll dx8[8] = {1, 0, -1, 0, 1, 1, -1, -1}; constexpr ll dy8[8] = {0, 1, 0, -1, 1, -1, 1, -1}; #define repoverload3(_1, _2, _3, name, ...) name #define rep3(i, a, b) for(ll i=(a), i##_length=(b); i<i##_length; ++i) #define rep2(i, n) rep3(i, 0, n) #define rep1(n) rep3(i, 0, n) #define rep(...) repoverload3(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__) #define repeq3(i, a, b) rep3(i, (a)+1, (b)+1) #define repeq2(i, n) rep3(i, 1, (n)+1) #define repeq1(n) rep3(i, 1, (n)+1) #define repeq(...) repoverload3(__VA_ARGS__, repeq3, repeq2, repeq1)(__VA_ARGS__) #define rrep3(i, a, b) for(ll i=(b)-1; i>=(a); --i) #define rrep2(i, n) rrep3(i, 0, n) #define rrep1(n) rrep3(i, 0, n) #define rrep(...) repoverload3(__VA_ARGS__, rrep3, rrep2, rrep1)(__VA_ARGS__) #define rrepeq3(i, a, b) rrep3(i, (a)+1, (b)+1) #define rrepeq2(i, n) rrep3(i, 1, (n)+1) #define rrepeq1(n) rrep3(i, 1, (n)+1) #define rrepeq(...) repoverload3(__VA_ARGS__, rrepeq3, rrepeq2, rrepeq1)(__VA_ARGS__) #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) void p() { std::cout << '\n'; } template <typename Head, typename... Tail> void p(const Head& head, const Tail&... tail) { std::cout << head << (sizeof...(tail) ? " " : ""); p(tail...); } template <typename T> inline void pv(const std::vector<T>& v) { for(ll i=0, N=v.size(); i<N; i++) std::cout << v[i] << " \n"[i==N-1]; } template <typename T> inline bool chmax(T& a, T b) { return a < b && (a = b, true); } template <typename T> inline bool chmin(T& a, T b) { return a > b && (a = b, true); } template <typename T> inline void uniq(std::vector<T>& v) { std::sort(v.begin(), v.end()); v.erase(std::unique(v.begin(), v.end()), v.end()); } template <typename T> inline ll sz(const T& v) { return std::size(v); } template <typename T, std::size_t N> std::vector<T> make_vector_impl(std::vector<ll>& sizes, typename std::enable_if<(N==1), const T&>::type x) { return std::vector<T>(sizes.front(),x); } template <typename T, std::size_t N> auto make_vector_impl(std::vector<ll>& sizes, typename std::enable_if<(N>1), const T&>::type x) { ll size=sizes.back(); sizes.pop_back(); return std::vector<decltype(make_vector_impl<T,N-1>(sizes,x))>(size,make_vector_impl<T,N-1>(sizes,x)); } template <typename T, std::size_t N> auto make_vector(const ll (&sizes)[N], const T& x=T()) { std::vector<ll> s(N); for(std::size_t i=0; i<N; ++i)s[i]=sizes[N-1-i]; return make_vector_impl<T,N>(s,x); } #if __has_include(<ext/pb_ds/assoc_container.hpp>) template <typename Key, typename Mapped, typename Hash = std::hash<Key>, typename std::enable_if_t<std::is_integral_v<Key>, std::nullptr_t> = nullptr> struct fmap : public __gnu_pbds::gp_hash_table<Key, Mapped, Hash> { using __gnu_pbds::gp_hash_table<Key, Mapped, Hash>::gp_hash_table; template <typename T> fmap(std::initializer_list<std::initializer_list<T>> il) : __gnu_pbds::gp_hash_table<Key, Mapped, Hash>() { for (auto&& x : il) __gnu_pbds::gp_hash_table<Key, Mapped, Hash>::insert(std::pair<Key, Mapped>(*x.begin(), *(x.begin() + 1))); } template <typename T> ll count(const T& x) const { return __gnu_pbds::gp_hash_table<Key, Mapped, Hash>::find(x) != __gnu_pbds::gp_hash_table<Key, Mapped, Hash>::end(); } }; #else template <typename Key, typename Mapped> using fmap = std::map<Key, Mapped>; #endif template <typename T> struct each_hepler { struct iterator { ll _pos; typename T::iterator _it; iterator(typename T::iterator it): _pos(0), _it(it) {} std::pair<ll, typename std::iterator_traits<typename T::iterator>::reference> operator*() const { return {_pos, *_it}; } iterator& operator++() { ++_pos; ++_it; return *this; } iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; } bool operator==(iterator const& it) const { return _it == it._it; } bool operator!=(iterator const& it) const { return !(*this == it); } }; T& _container; each_hepler(T& t): _container(t) {} iterator begin() const { return iterator(_container.begin()); } iterator end() const { return iterator(_container.end()); } }; template <typename T> each_hepler<T> each(T& t) { return each_hepler<T>(t); } // for (auto&& [i, val] : each(v)) template <typename... T> class zip_helper { public: class iterator : std::iterator<std::forward_iterator_tag, std::tuple<decltype(*std::declval<T>().begin())...>> { private: std::tuple<decltype(std::declval<T>().begin())...> iters_; template <std::size_t... I> auto deref(std::index_sequence<I...>) const { return typename iterator::value_type{*std::get<I>(iters_)...}; } template <std::size_t... I> void increment(std::index_sequence<I...>) { [[maybe_unused]] auto l = {(++std::get<I>(iters_), 0)...}; } public: explicit iterator(decltype(iters_) iters) : iters_{std::move(iters)} {} iterator& operator++() { increment(std::index_sequence_for<T...>{}); return *this; } iterator operator++(int) { auto saved{*this}; increment(std::index_sequence_for<T...>{}); return saved; } bool operator!=(const iterator& other) const { return iters_ != other.iters_; } auto operator*() const { return deref(std::index_sequence_for<T...>{}); } }; zip_helper(T&... seqs) : begin_{std::make_tuple(seqs.begin()...)}, end_{std::make_tuple(seqs.end()...)} {} iterator begin() const { return begin_; } iterator end() const { return end_; } private: iterator begin_, end_; }; template <typename... T> auto zip(T&&... seqs) { return zip_helper<T...>{seqs...}; } // for (auto&& [a, b, c] : zip(A, B, C)) /*-----8<-----template-----8<-----*/ //[lib]johnsons_algorithm.cpp using EdgeCostType = ll; using usize = std::size_t; template <class T> class edge_type { public: usize from, to; T cost, rawcost; edge_type() {} edge_type(usize from, usize to, T cost) : from(from), to(to), cost(cost) {} edge_type(usize from, usize to, T cost, T rawcost) : from(from), to(to), cost(cost), rawcost(rawcost) {} bool operator<(const edge_type& r) const { return r.cost < cost; } }; using Edge = edge_type<EdgeCostType>; ostream& operator<<(ostream& s, const Edge& e) { s << "{ " << e.from << " -> " << e.to << ", " << e.cost << " }"; return s; } inline void addedge(vector<vector<Edge>>& g, usize from, usize to, EdgeCostType cost) { g[from].emplace_back(from, to, cost); g[to].emplace_back(to, from, cost); } //最短路木の親頂点を元にstart->goalの経路を作成 vector<ll> buildPath(const vector<ll> &prev, ll goal) { vector<ll> path; for (ll u = goal; u >= 0; u = prev[u]) path.push_back(u); reverse(path.begin(), path.end()); return path; } template <class T> class fibonacci_heap { class node_type; using node_ptr = node_type *; class node_type { public: node_ptr parent; node_ptr child; node_ptr left; node_ptr right; usize rank; bool mark; T key; usize prev; T rawcost; node_type() : parent(nullptr), child(nullptr), left(nullptr), right(nullptr), rank(0), mark(false), key(std::numeric_limits<T>::max()), prev(-1) {} }; vector<node_type> nodes; node_ptr root; vector<node_ptr> table; public: fibonacci_heap(const usize n) : nodes(n), root(nullptr), table(std::ceil(std::log(n + 1) * 2.08), nullptr) {} bool empty() const { return root == nullptr; } edge_type<T> pop() { edge_type<T> ret = {root->prev, static_cast<usize>(root - nodes.data()), root->key, root->rawcost}; usize max = 0; const auto push = [&](node_ptr v) -> void { while (true) { node_ptr u = table[v->rank]; if (u == nullptr) { table[v->rank] = v; break; } table[v->rank] = nullptr; if (u->key < v->key) { std::swap(u, v); } const node_ptr c = v->child; if (c == nullptr) { u->left = u; u->right = u; v->child = u; } else { u->left = c->left; u->right = c; c->left->right = u; c->left = u; } u->parent = v; v->rank += 1; } max = std::max(max, v->rank + 1); }; { node_ptr v = root->right; while (v != root) { const node_ptr next = v->right; push(v); v = next; } } if (root->child != nullptr) { node_ptr v = root->child; do { const node_ptr next = v->right; v->mark = false; push(v); v = next; } while (v != root->child); } root = nullptr; for (usize i = 0; i != max; i += 1) { const node_ptr v = table[i]; if (v == nullptr) { continue; } table[i] = nullptr; v->parent = nullptr; if (root == nullptr) { root = v; v->left = v; v->right = v; } else { v->left = root->left; v->right = root; root->left->right = v; root->left = v; if (root->key > v->key) { root = v; } } } return ret; } void update_key(const usize v_, const T key, const usize prev, const T rawcost) { node_ptr v = &nodes[v_]; if (v->key <= key) { return; } v->key = key; v->prev = prev; v->rawcost = rawcost; if (v->left == nullptr) { if (root == nullptr) { v->left = v; v->right = v; root = v; } else { v->left = root->left; v->right = root; root->left->right = v; root->left = v; if (key < root->key) { root = v; } } return; } if (v->parent == nullptr) { if (key < root->key) { root = v; } return; } else { if (v->parent->key <= key) { return; } } while (true) { const node_ptr p = v->parent; v->left->right = v->right; v->right->left = v->left; v->parent = nullptr; p->rank -= 1; if (p->child == v) { if (p->rank == 0) { p->child = nullptr; } else { p->child = v->right; } } v->left = root->left; v->right = root; root->left->right = v; root->left = v; v->mark = false; v = p; if (v->parent == nullptr) { break; } if (!v->mark) { v->mark = true; break; } } if (root->key > key) { root = &nodes[v_]; } } }; /* 計算量:O(E+VlogV) 引数 g:探索するグラフ start:探索するスタートノード番号 戻り値 dist:スタートノードから各頂点までの距離 prev:最短路木の親頂点 */ void dijkstra(const vector<vector<Edge>> &g, ll start, vector<EdgeCostType> &dist, vector<ll> &prev) { dist.assign(g.size(), INF); dist[start] = 0; prev.assign(g.size(), -1); fibonacci_heap<EdgeCostType> heap(g.size()); heap.update_key(start, 0, -1, 0); while (!heap.empty()) { const auto top = heap.pop(); dist[top.to] = top.rawcost; if (top.from != (usize)-1) prev[top.to] = top.from; for (const auto &edge : g[top.to]) { heap.update_key(edge.to, top.cost + edge.cost, edge.from, top.rawcost + edge.rawcost); } } } bool bellman_ford(const vector<vector<Edge>> &g, ll start, vector<EdgeCostType> &dist, vector<ll> &prev) { ll gsize = g.size(); dist.assign(gsize, INF+INF); dist[start] = 0; prev.assign(gsize, -1); bool negative_cycle = false; for(ll k=0; k<gsize*2; k++){ for(ll i=0; i<gsize; i++){ for(const Edge &e : g[i]) { if (dist[e.from] == INF+INF) continue; if (dist[e.to] > dist[e.from] + e.cost) { dist[e.to] = dist[e.from] + e.cost; prev[e.to] = e.from; if (k >= gsize-1) { dist[e.to] = -INF; negative_cycle = true; } } } } } return negative_cycle; } //dijkstraはこれ専用に改造されている //https://dic.kimiyuki.net/johnson-algorithm //全点対間最短経路問題を解くアルゴリズム //負閉路を検出するとtrueを返す その場合dist,prevは使えない //計算量:O(∣V∣^2log∣V∣+∣V∣∣E∣) bool johnsons_algorithm(const vector<vector<Edge>> &g, vector<vector<EdgeCostType>> &dist, vector<vector<ll>> &prev){ ll gsize = g.size(); dist.resize(gsize); prev.resize(gsize); bool hasminusedge = false; vector<vector<Edge>> convertedg(g); for (auto&& v : convertedg) for (auto&& edge : v) { edge.rawcost = edge.cost; if (edge.cost < 0) { hasminusedge = true; } } if (hasminusedge) { convertedg.emplace_back(); convertedg.back().reserve(gsize); for (ll v = 0; v < gsize; v++) { convertedg.back().emplace_back(gsize, v, 0); } vector<EdgeCostType> bellmandist; vector<ll> bellmanprev; bool negative_cycle = bellman_ford(convertedg, gsize, bellmandist, bellmanprev); if (negative_cycle) return true; convertedg.pop_back(); for (auto&& v : convertedg) for (auto&& edge : v) { edge.cost += bellmandist[edge.from] - bellmandist[edge.to]; } } for (ll v = 0; v < gsize; v++) { dijkstra(convertedg, v, dist[v], prev[v]); } return false; } [[nodiscard]] inline ll up(ll bit, ll i) { return bit | (1LL<<i); } [[nodiscard]] inline ll down(ll bit, ll i) { return bit & ~(1LL<<i); } [[nodiscard]] inline ll flip(ll bit, ll i) { return bit ^ (1LL<<i); } inline bool isup(ll bit, ll i) { return bit & (1LL<<i); } inline bool isdown(ll bit, ll i) { return !(bit & (1LL<<i)); } inline ll bsr(ll bit){ assert(bit); return 63 - __builtin_clzll(bit); } //最上位ビットの位置 inline ll bsf(ll bit){ assert(bit); return __builtin_ctzll(bit); } //最下位ビットの位置 //numeric_limits<ll>::digits -> llのビット数の定数 //__builtin_popcountll(bit); -> bitの立っている個数を返す //__builtin_clzll(bit); -> bitの頭の0の数を返す 0のときは未定義に注意 //__builtin_ctzll(bit); -> bitのお尻の0の数を返す 0のときは未定義に注意 /* //bitの部分集合を全列挙 for (ll subbit = bit; subbit >= 0; subbit--) { subbit &= bit; //if(subbit==bit)continue; //全体集合bit自身をスキップ //if(subbit==0)continue; //空集合をスキップ debug(subbit, bit & ~subbit); // 部分集合、およびその残り } */ //[lib]warshall_floyd.cpp //計算量:O(N^3) void warshall_floyd(vector<vector<ll>> &d) { ll N=d.size(); for (ll k=0; k<N; k++) { for (ll i=0; i<N; i++) { for (ll j=0; j<N; j++){ if(d[i][k] != INF && d[k][j] != INF && d[i][k] + d[k][j] < d[i][j]){ d[i][j] = d[i][k] + d[k][j]; } } } } } /*-----8<-----library-----8<-----*/ void solve() { ll N, M, K; cin>>N>>M>>K; vector<ll> a(N); rep(i, N) cin >> a[i]; vector<vector<Edge>> g(N); rep(i,M){ ll a, b, c; cin >> a >> b >> c; a--, b--; g[a].emplace_back(a, b, c); g[b].emplace_back(b, a, c); } vector<vector<EdgeCostType>> dist; vector<vector<ll>> prev; bool negative_cycle = johnsons_algorithm(g, dist, prev); /* vector<vector<ll>> dist(N, vector<ll>(N, INF)); for (ll i = 0; i < (ll)dist.size(); i++) dist[i][i] = 0; for(ll i=0; i<M; i++) { ll from,to,cost; cin >> from >> to >> cost; from--;to--; dist[from][to] = cost; dist[to][from] = cost;//無向グラフの場合は両方に辺を張る } warshall_floyd(dist); */ vector<ll> dp(1 << N, INF); dp[0] = 0; rep(bit, 1LL << N) { rep(i,N){ if (isup(bit, i)) continue; ll nextbit = up(bit, i); if(bit==0){ chmin(dp[nextbit], a[i]); continue; } ll t = INF; rep(j,N){ if (isdown(bit, j)) continue; ll s = dist[i][j]; chmin(t, s); } chmin(dp[nextbit], a[i]+t+dp[bit]); } } ll ans = INF; rep(bit,1LL<<N){ if(__builtin_popcountll(bit)==K){ chmin(ans, dp[bit]); } } p(ans); } signed main() { #ifndef LOCAL_DEV std::cin.tie(nullptr); std::ios::sync_with_stdio(false); #endif //ll Q; cin >> Q; while(Q--)solve(); solve(); return 0; }