結果
| 問題 |
No.1774 Love Triangle (Hard)
|
| ユーザー |
hitonanode
|
| 提出日時 | 2021-09-25 03:11:48 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 6,287 ms / 8,000 ms |
| コード長 | 11,369 bytes |
| コンパイル時間 | 2,334 ms |
| コンパイル使用メモリ | 136,860 KB |
| 最終ジャッジ日時 | 2025-01-24 18:01:48 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 90 |
ソースコード
#include <algorithm>
#include <cassert>
#include <chrono>
#include <iostream>
#include <numeric>
#include <queue>
#include <random>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define REP(i, n) FOR(i,0,n)
#include <atcoder/modint>
// using mint = atcoder::modint1000000007;
using mint = atcoder::static_modint<1000000009>;
template <typename T> struct matrix {
int H, W;
std::vector<T> elem;
typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; }
inline T &at(int i, int j) { return elem[i * W + j]; }
inline T get(int i, int j) const { return elem[i * W + j]; }
int height() const { return H; }
int width() const { return W; }
std::vector<std::vector<T>> vecvec() const {
std::vector<std::vector<T>> ret(H);
for (int i = 0; i < H; i++) {
std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i]));
}
return ret;
}
operator std::vector<std::vector<T>>() const { return vecvec(); }
matrix() = default;
matrix(int H, int W) : H(H), W(W), elem(H * W) {}
matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) {
for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem));
}
static matrix Identity(int N) {
matrix ret(N, N);
for (int i = 0; i < N; i++) ret.at(i, i) = 1;
return ret;
}
matrix operator-() const {
matrix ret(H, W);
for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i];
return ret;
}
matrix operator*(const T &v) const {
matrix ret = *this;
for (auto &x : ret.elem) x *= v;
return ret;
}
matrix operator/(const T &v) const {
matrix ret = *this;
const T vinv = T(1) / v;
for (auto &x : ret.elem) x *= vinv;
return ret;
}
matrix operator+(const matrix &r) const {
matrix ret = *this;
for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i];
return ret;
}
matrix operator-(const matrix &r) const {
matrix ret = *this;
for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i];
return ret;
}
matrix operator*(const matrix &r) const {
matrix ret(H, r.W);
for (int i = 0; i < H; i++) {
for (int k = 0; k < W; k++) {
for (int j = 0; j < r.W; j++) ret.at(i, j) += this->get(i, k) * r.get(k, j);
}
}
return ret;
}
matrix &operator*=(const T &v) { return *this = *this * v; }
matrix &operator/=(const T &v) { return *this = *this / v; }
matrix &operator+=(const matrix &r) { return *this = *this + r; }
matrix &operator-=(const matrix &r) { return *this = *this - r; }
matrix &operator*=(const matrix &r) { return *this = *this * r; }
bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; }
bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; }
bool operator<(const matrix &r) const { return elem < r.elem; }
matrix pow(int64_t n) const {
matrix ret = Identity(H);
bool ret_is_id = true;
if (n == 0) return ret;
for (int i = 63 - __builtin_clzll(n); i >= 0; i--) {
if (!ret_is_id) ret *= ret;
if ((n >> i) & 1) ret *= (*this), ret_is_id = false;
}
return ret;
}
std::vector<T> pow_vec(int64_t n, std::vector<T> vec) const {
matrix x = *this;
while (n) {
if (n & 1) vec = x * vec;
x *= x;
n >>= 1;
}
return vec;
};
matrix transpose() const {
matrix ret(W, H);
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j);
}
return ret;
}
// Gauss-Jordan elimination
// - Require inverse for every non-zero element
// - Complexity: O(H^2 W)
template <typename T2, typename std::enable_if<std::is_floating_point<T2>::value>::type * = nullptr>
static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept {
int piv = -1;
for (int j = h; j < mtr.H; j++) {
if (mtr.get(j, c) and (piv < 0 or std::abs(mtr.get(j, c)) > std::abs(mtr.get(piv, c)))) piv = j;
}
return piv;
}
template <typename T2, typename std::enable_if<!std::is_floating_point<T2>::value>::type * = nullptr>
static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept {
for (int j = h; j < mtr.H; j++) {
if (mtr.get(j, c)) return j;
}
return -1;
}
matrix gauss_jordan() const {
int c = 0;
matrix mtr(*this);
std::vector<int> ws;
ws.reserve(W);
for (int h = 0; h < H; h++) {
if (c == W) break;
int piv = choose_pivot(mtr, h, c);
if (piv == -1) {
c++;
h--;
continue;
}
if (h != piv) {
for (int w = 0; w < W; w++) {
std::swap(mtr[piv][w], mtr[h][w]);
mtr.at(piv, w) *= -1; // To preserve sign of determinant
}
}
ws.clear();
for (int w = c; w < W; w++) {
if (mtr.at(h, w) != 0) ws.emplace_back(w);
}
const T hcinv = T(1) / mtr.at(h, c);
for (int hh = 0; hh < H; hh++)
if (hh != h) {
const T coeff = mtr.at(hh, c) * hcinv;
for (auto w : ws) mtr.at(hh, w) -= mtr.at(h, w) * coeff;
mtr.at(hh, c) = 0;
}
c++;
}
return mtr;
}
int rank_of_gauss_jordan() const {
for (int i = H * W - 1; i >= 0; i--) {
if (elem[i]) return i / W + 1;
}
return 0;
}
int inverse() {
assert(H == W);
std::vector<std::vector<T>> ret = Identity(H), tmp = *this;
int rank = 0;
for (int i = 0; i < H; i++) {
int ti = i;
while (ti < H and tmp[ti][i] == 0) ti++;
if (ti == H) {
continue;
} else {
rank++;
}
ret[i].swap(ret[ti]), tmp[i].swap(tmp[ti]);
T inv = T(1) / tmp[i][i];
for (int j = 0; j < W; j++) ret[i][j] *= inv;
for (int j = i + 1; j < W; j++) tmp[i][j] *= inv;
for (int h = 0; h < H; h++) {
if (i == h) continue;
const T c = -tmp[h][i];
for (int j = 0; j < W; j++) ret[h][j] += ret[i][j] * c;
for (int j = i + 1; j < W; j++) tmp[h][j] += tmp[i][j] * c;
}
}
*this = ret;
return rank;
}
friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) {
assert(m.W == int(v.size()));
std::vector<T> ret(m.H);
for (int i = 0; i < m.H; i++) {
for (int j = 0; j < m.W; j++) ret[i] += m.get(i, j) * v[j];
}
return ret;
}
friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) {
assert(int(v.size()) == m.H);
std::vector<T> ret(m.W);
for (int i = 0; i < m.H; i++) {
for (int j = 0; j < m.W; j++) ret[j] += v[i] * m.get(i, j);
}
return ret;
}
};
template <class ModInt>
std::vector<int>
linear_matroid_parity(const std::vector<std::pair<std::vector<ModInt>, std::vector<ModInt>>> &bcs) {
if (bcs.empty()) return {};
const int r = bcs[0].first.size(), m = bcs.size(), r2 = (r + 1) / 2;
std::mt19937 mt(std::chrono::steady_clock::now().time_since_epoch().count());
std::uniform_int_distribution<int> d(0, ModInt::mod() - 1);
auto gen_random_vector = [&]() -> std::vector<ModInt> {
std::vector<ModInt> v(r2 * 2);
for (int i = 0; i < r2 * 2; i++) v[i] = d(mt);
return v;
};
std::vector<ModInt> x(m);
std::vector<std::pair<vector<ModInt>, vector<ModInt>>> bcadd(r2);
matrix<ModInt> Y, Yinv; // r2 * r2 matrices
int rankY = -1;
while (rankY < r2 * 2) {
Y = matrix<ModInt>(r2 * 2, r2 * 2);
for (auto &[b, c] : bcadd) {
b = gen_random_vector(), c = gen_random_vector();
for (int j = 0; j < r2 * 2; j++) {
for (int k = 0; k < r2 * 2; k++) Y[j][k] += b[j] * c[k] - c[j] * b[k];
}
}
Yinv = Y;
rankY = Yinv.inverse();
}
std::vector<std::vector<ModInt>> tmpmat(r2 * 2, std::vector<ModInt>(r2 * 2));
std::vector<int> ret(m, -1);
int additional_dim = bcadd.size();
for (int i = 0; i < m; i++) {
{
x[i] = d(mt);
auto b = bcs[i].first, c = bcs[i].second;
b.resize(r2 * 2, 0), c.resize(r2 * 2, 0);
std::vector<ModInt> Yib = Yinv * b, Yic = Yinv * c;
ModInt bYic = std::inner_product(b.begin(), b.end(), Yic.begin(), ModInt(0));
ModInt v = 1 + x[i] * bYic;
const auto coeff = x[i] / v;
for (int j = 0; j < r2 * 2; j++) {
for (int k = 0; k < r2 * 2; k++) {
tmpmat[j][k] = Yib[j] * Yic[k] - Yic[j] * Yib[k];
}
}
for (int j = 0; j < r2 * 2; j++) {
for (int k = 0; k < r2 * 2; k++) Yinv[j][k] -= tmpmat[j][k] * coeff;
}
}
if (additional_dim) {
const auto &[b, c] = bcadd[additional_dim - 1];
std::vector<ModInt> Yib = Yinv * b, Yic = Yinv * c;
ModInt bYic = std::inner_product(b.begin(), b.end(), Yic.begin(), ModInt(0));
const ModInt v = 1 + bYic;
if (v != 0) {
// 消しても正則
additional_dim--;
const auto coeff = 1 / v;
for (int j = 0; j < r2 * 2; j++) {
for (int k = 0; k < r2 * 2; k++) tmpmat[j][k] = Yib[j] * Yic[k] - Yic[j] * Yib[k];
}
for (int j = 0; j < r2 * 2; j++) {
for (int k = 0; k < r2 * 2; k++) Yinv[j][k] -= tmpmat[j][k] * coeff;
}
}
}
ret[i] = r2 - additional_dim;
}
return ret;
}
vector<int> solve(int N, vector<pair<pint, pint>> bcs) {
vector<pair<vector<mint>, vector<mint>>> vs;
for (auto [ab, cd] : bcs) {
auto [a, b] = ab;
auto [c, d] = cd;
vector<mint> B(N), C(N);
B.at(a) += 1;
B.at(b) -= 1;
C.at(c) += 1;
C.at(d) -= 1;
vs.emplace_back(B, C);
}
auto ret1 = linear_matroid_parity<mint>(vs);
// auto ret2 = linear_matroid_parity<mint>(vs);
// for (int i = 0; i < int(ret1.size()); i++) ret1[i] = max(ret1[i], ret2[i]);
return ret1;
}
int main() {
int N, M;
cin >> N >> M;
vector<pair<pint, pint>> edges;
while (M--) {
int u, v, w;
cin >> u >> v >> w;
u--, v--, w--;
edges.push_back({{u, w}, {v, w}});
}
auto ret = solve(N, edges);
for (auto x : ret) cout << x << '\n';
}
hitonanode