結果
| 問題 |
No.776 A Simple RMQ Problem
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-09-27 16:23:14 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 430 ms / 3,000 ms |
| コード長 | 8,760 bytes |
| コンパイル時間 | 21,380 ms |
| コンパイル使用メモリ | 388,424 KB |
| 実行使用メモリ | 19,072 KB |
| 最終ジャッジ日時 | 2024-07-06 12:08:58 |
| 合計ジャッジ時間 | 33,901 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 26 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::Read;
#[allow(dead_code)]
fn getline() -> String {
let mut ret = String::new();
std::io::stdin().read_line(&mut ret).ok().unwrap();
ret
}
fn get_word() -> String {
let stdin = std::io::stdin();
let mut stdin=stdin.lock();
let mut u8b: [u8; 1] = [0];
loop {
let mut buf: Vec<u8> = Vec::with_capacity(16);
loop {
let res = stdin.read(&mut u8b);
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
break;
} else {
buf.push(u8b[0]);
}
}
if buf.len() >= 1 {
let ret = String::from_utf8(buf).unwrap();
return ret;
}
}
}
#[allow(dead_code)]
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }
/**
* Segment Tree. This data structure is useful for fast folding on intervals of an array
* whose elements are elements of monoid I. Note that constructing this tree requires the identity
* element of I and the operation of I.
* Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581)
* AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001)
*/
struct SegTree<I, BiOp> {
n: usize,
dat: Vec<I>,
op: BiOp,
e: I,
}
impl<I, BiOp> SegTree<I, BiOp>
where BiOp: Fn(I, I) -> I,
I: Copy {
pub fn new(n_: usize, op: BiOp, e: I) -> Self {
let mut n = 1;
while n < n_ { n *= 2; } // n is a power of 2
SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e}
}
/* ary[k] <- v */
pub fn update(&mut self, idx: usize, v: I) {
let mut k = idx + self.n - 1;
self.dat[k] = v;
while k > 0 {
k = (k - 1) / 2;
self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]);
}
}
/* [a, b) (note: half-inclusive)
* http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */
pub fn query(&self, mut a: usize, mut b: usize) -> I {
let mut left = self.e;
let mut right = self.e;
a += self.n - 1;
b += self.n - 1;
while a < b {
if (a & 1) == 0 {
left = (self.op)(left, self.dat[a]);
}
if (b & 1) == 0 {
right = (self.op)(self.dat[b - 1], right);
}
a = a / 2;
b = (b - 1) / 2;
}
(self.op)(left, right)
}
}
/**
* Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
* whose elements are elements of monoid T. Note that constructing this tree requires the identity
* element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
* Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261
* Verified by https://codeforces.com/contest/1114/submission/49759034
*/
pub trait ActionRing {
type T: Clone + Copy; // data
type U: Clone + Copy + PartialEq + Eq; // action
fn biop(x: Self::T, y: Self::T) -> Self::T;
fn update(x: Self::T, a: Self::U, height: usize) -> Self::T;
fn upop(fst: Self::U, snd: Self::U) -> Self::U;
fn e() -> Self::T;
fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTree<R: ActionRing> {
n: usize,
dep: usize,
dat: Vec<R::T>,
lazy: Vec<R::U>,
}
impl<R: ActionRing> LazySegTree<R> {
#[allow(unused)]
pub fn new(n_: usize) -> Self {
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
LazySegTree {
n: n,
dep: dep,
dat: vec![R::e(); 2 * n - 1],
lazy: vec![R::upe(); 2 * n - 1]
}
}
#[allow(unused)]
pub fn with(a: &[R::T]) -> Self {
let n_ = a.len();
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
let mut dat = vec![R::e(); 2 * n - 1];
for i in 0..n_ {
dat[n - 1 + i] = a[i];
}
for i in (0..n - 1).rev() {
dat[i] = R::biop(dat[2 * i + 1], dat[2 * i + 2]);
}
LazySegTree {
n: n,
dep: dep,
dat: dat,
lazy: vec![R::upe(); 2 * n - 1],
}
}
#[inline]
fn lazy_evaluate_node(&mut self, k: usize, height: usize) {
if self.lazy[k] == R::upe() { return; }
self.dat[k] = R::update(self.dat[k], self.lazy[k], height);
if k < self.n - 1 {
self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);
self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);
}
self.lazy[k] = R::upe(); // identity for upop
}
#[inline]
fn update_node(&mut self, k: usize) {
self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]);
}
fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) {
self.lazy_evaluate_node(k, height);
// [a,b) and [l,r) intersects?
if r <= a || b <= l {return;}
if a <= l && r <= b {
self.lazy[k] = R::upop(self.lazy[k], v);
self.lazy_evaluate_node(k, height);
return;
}
self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2);
self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r);
self.update_node(k);
}
/* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */
#[inline]
pub fn update(&mut self, a: usize, b: usize, v: R::U) {
let n = self.n;
let dep = self.dep;
self.update_sub(a, b, v, 0, dep, 0, n);
}
/* l,r are for simplicity */
fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T {
self.lazy_evaluate_node(k, height);
// [a,b) and [l,r) intersect?
if r <= a || b <= l {return R::e();}
if a <= l && r <= b {return self.dat[k];}
let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2);
let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r);
self.update_node(k);
R::biop(vl, vr)
}
/* [a, b) (note: half-inclusive) */
#[inline]
pub fn query(&mut self, a: usize, b: usize) -> R::T {
let n = self.n;
let dep = self.dep;
self.query_sub(a, b, 0, dep, 0, n)
}
}
enum AddMax {}
impl ActionRing for AddMax {
type T = i64; // data
type U = i64; // action, a |-> x |-> a + x
fn biop(x: Self::T, y: Self::T) -> Self::T {
std::cmp::max(x, y)
}
fn update(x: Self::T, a: Self::U, _height: usize) -> Self::T {
x + a
}
fn upop(fst: Self::U, snd: Self::U) -> Self::U {
fst + snd
}
fn e() -> Self::T {
-1 << 50
}
fn upe() -> Self::U { // identity for upop
0
}
}
const INF: i64 = 1 << 50;
fn main() {
let n: usize = get();
let q: usize = get();
let mut a: Vec<i64> = (0..n).map(|_| get()).collect();
let mut acc = vec![0; n + 1];
for i in 0..n {
acc[i + 1] = acc[i] + a[i];
}
let mut stma = LazySegTree::<AddMax>::with(&acc);
for i in 0..n + 1 {
acc[i] = -acc[i];
}
let mut stmi = LazySegTree::<AddMax>::with(&acc);
let mut st = SegTree::new(n, |(mi1, ma1, v1, d1), (mi2, ma2, v2, d2)| {
(min(mi1, d1 + mi2), max(ma1, d1 + ma2), max(v1, max(v2, d1 + ma2 - mi1)), d1 + d2)
}, (INF, -INF, -INF, 0));
for i in 0..n {
let x = a[i];
st.update(i, (0, x, x, x));
}
for _ in 0..q {
let kind = get_word();
if kind == "set" {
let i: usize = get();
let x: i64 = get();
let diff = x - a[i - 1];
stma.update(i, n + 1, diff);
stmi.update(i, n + 1, -diff);
st.update(i - 1, (0, x, x, x));
a[i - 1] = x;
} else {
// TODO: don't assume l2 <= r2, l1 <= r1
let l1 = get::<usize>() - 1;
let l2: usize = get();
let r1: usize = get();
let r2 = get::<usize>() + 1;
let l2 = min(l2, r2 - 1);
let r1 = max(r1, l1 + 1);
let x = min(l2, r1);
let y = max(l2, r1);
// eprintln!("{} {} {} {} {} {}", l1, l2, r1, r2, x, y);
let mut tmp = stma.query(r1, r2) + stmi.query(l1, x);
tmp = max(tmp, stma.query(y, r2) + stmi.query(l1, l2));
if l2 > r1 {
tmp = max(tmp, st.query(x, y).2);
}
println!("{}", tmp);
}
}
}