結果
問題 | No.535 自然数の収納方法 |
ユーザー | koba-e964 |
提出日時 | 2021-09-29 09:12:02 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 30 ms / 2,000 ms |
コード長 | 5,170 bytes |
コンパイル時間 | 16,010 ms |
コンパイル使用メモリ | 388,272 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-16 06:41:35 |
合計ジャッジ時間 | 13,129 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,812 KB |
testcase_02 | AC | 1 ms
6,812 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 1 ms
6,940 KB |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | AC | 0 ms
6,944 KB |
testcase_07 | AC | 6 ms
6,940 KB |
testcase_08 | AC | 18 ms
6,944 KB |
testcase_09 | AC | 22 ms
6,940 KB |
testcase_10 | AC | 26 ms
6,940 KB |
testcase_11 | AC | 4 ms
6,940 KB |
testcase_12 | AC | 11 ms
6,940 KB |
testcase_13 | AC | 1 ms
6,940 KB |
testcase_14 | AC | 8 ms
6,944 KB |
testcase_15 | AC | 28 ms
6,940 KB |
testcase_16 | AC | 17 ms
6,944 KB |
testcase_17 | AC | 29 ms
6,944 KB |
testcase_18 | AC | 1 ms
6,940 KB |
testcase_19 | AC | 30 ms
6,944 KB |
testcase_20 | AC | 30 ms
6,944 KB |
testcase_21 | AC | 30 ms
6,940 KB |
testcase_22 | AC | 30 ms
6,940 KB |
ソースコード
use std::cmp::*; use std::io::Read; fn get_word() -> String { let stdin = std::io::stdin(); let mut stdin=stdin.lock(); let mut u8b: [u8; 1] = [0]; loop { let mut buf: Vec<u8> = Vec::with_capacity(16); loop { let res = stdin.read(&mut u8b); if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { break; } else { buf.push(u8b[0]); } } if buf.len() >= 1 { let ret = String::from_utf8(buf).unwrap(); return ret; } } } #[allow(dead_code)] fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 1_000_000_007; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; // O(n^2) fn calc(n: usize, dp: &[MInt]) -> Vec<MInt> { let mut dp = dp.to_vec(); for i in 0..n - 1 { let mut acc = vec![MInt::new(0); n + 1]; for j in 0..n { acc[j + 1] = acc[j] + dp[j]; } let mut ep = vec![MInt::new(0); n]; let diff = max(1, i); for j in 0..n { ep[j] = acc[min(n, j + diff)]; } dp = ep; } dp } fn main() { let n: usize = get(); let dp = vec![MInt::new(1); n]; let dp1 = calc(n, &dp); let mut dp = vec![MInt::new(0); n]; dp[0] = 1.into(); let dp2 = calc(n, &dp); let mut sum = -dp2[n - 1]; for i in 0..n { sum += dp1[i]; } println!("{}", sum); }