結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | vwxyz |
提出日時 | 2021-09-30 10:43:25 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,381 bytes |
コンパイル時間 | 155 ms |
コンパイル使用メモリ | 13,312 KB |
実行使用メモリ | 47,016 KB |
最終ジャッジ日時 | 2024-07-17 14:08:19 |
合計ジャッジ時間 | 64,917 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 43 ms
12,288 KB |
testcase_01 | AC | 44 ms
12,288 KB |
testcase_02 | AC | 44 ms
12,288 KB |
testcase_03 | AC | 43 ms
12,160 KB |
testcase_04 | AC | 44 ms
12,160 KB |
testcase_05 | AC | 49 ms
12,288 KB |
testcase_06 | AC | 135 ms
13,312 KB |
testcase_07 | AC | 136 ms
13,312 KB |
testcase_08 | AC | 136 ms
13,312 KB |
testcase_09 | AC | 137 ms
13,440 KB |
testcase_10 | WA | - |
testcase_11 | AC | 44 ms
12,416 KB |
testcase_12 | AC | 138 ms
13,184 KB |
testcase_13 | AC | 137 ms
13,184 KB |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | AC | 126 ms
13,056 KB |
testcase_17 | AC | 4,593 ms
45,860 KB |
testcase_18 | AC | 4,550 ms
46,368 KB |
testcase_19 | AC | 4,570 ms
46,608 KB |
testcase_20 | AC | 3,941 ms
39,236 KB |
testcase_21 | AC | 4,586 ms
47,012 KB |
testcase_22 | AC | 2,189 ms
28,860 KB |
testcase_23 | AC | 4,526 ms
45,760 KB |
testcase_24 | AC | 4,676 ms
45,732 KB |
testcase_25 | AC | 4,670 ms
47,016 KB |
testcase_26 | AC | 4,706 ms
46,372 KB |
testcase_27 | AC | 4,482 ms
45,868 KB |
testcase_28 | AC | 4,583 ms
44,568 KB |
testcase_29 | AC | 4,654 ms
46,104 KB |
testcase_30 | AC | 4,507 ms
46,080 KB |
ソースコード
import bisect import copy import decimal import fractions import functools import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines mod=998244353 def NTT(polynomial1,polynomial2): if mod==998244353: prim_root=3 else: prim_root=Primitive_Root(mod) prim_root_inve=MOD(mod).Pow(prim_root,-1) def DFT(polynomial,inverse=False): dft=polynomial+[0]*((1<<n)-len(polynomial)) if inverse: for bit in range(1,n+1): a=1<<bit-1 x=pow(prim_root,mod-1>>bit,mod) U=[1] for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a dft[s],dft[t]=(dft[s]+dft[t]*U[j])%mod,(dft[s]-dft[t]*U[j])%mod x=pow((mod+1)//2,n) for i in range(1<<n): dft[i]*=x dft[i]%=mod else: for bit in range(n,0,-1): a=1<<bit-1 x=pow(prim_root_inve,mod-1>>bit,mod) U=[1] for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a dft[s],dft[t]=(dft[s]+dft[t])%mod,U[j]*(dft[s]-dft[t])%mod return dft n=(len(polynomial1)+len(polynomial2)-2).bit_length() ntt=[x*y%mod for x,y in zip(DFT(polynomial1),DFT(polynomial2))] ntt=DFT(ntt,inverse=True) return ntt def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=1): self.p=p self.e=e self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] self.cnt=[0]*(N+1) for i in range(1,N+1): ii=i self.cnt[i]=self.cnt[i-1] while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append((self.factorial[-1]*ii)%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Fact(self,N): return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod def Fact_Inve(self,N): if self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu L,M,N=map(int,readline().split()) A=[0]*N for a in map(int,readline().split()): A[a-1]+=1 while A and A[-1]==0: A.pop() B=[0]*N for b in map(int,readline().split()): B[b-1]+=1 while B and B[-1]==0: B.pop() if len(A)<len(B): A,B=B,A B=B[::-1] Q=int(readline()) ans_lst=NTT(A,B) l=len(B) for ans in ans_lst[l-1:l-1+Q]: print(ans)