結果

問題 No.206 数の積集合を求めるクエリ
ユーザー vwxyzvwxyz
提出日時 2021-09-30 10:43:25
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
WA  
実行時間 -
コード長 4,381 bytes
コンパイル時間 155 ms
コンパイル使用メモリ 13,312 KB
実行使用メモリ 47,016 KB
最終ジャッジ日時 2024-07-17 14:08:19
合計ジャッジ時間 64,917 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 43 ms
12,288 KB
testcase_01 AC 44 ms
12,288 KB
testcase_02 AC 44 ms
12,288 KB
testcase_03 AC 43 ms
12,160 KB
testcase_04 AC 44 ms
12,160 KB
testcase_05 AC 49 ms
12,288 KB
testcase_06 AC 135 ms
13,312 KB
testcase_07 AC 136 ms
13,312 KB
testcase_08 AC 136 ms
13,312 KB
testcase_09 AC 137 ms
13,440 KB
testcase_10 WA -
testcase_11 AC 44 ms
12,416 KB
testcase_12 AC 138 ms
13,184 KB
testcase_13 AC 137 ms
13,184 KB
testcase_14 WA -
testcase_15 WA -
testcase_16 AC 126 ms
13,056 KB
testcase_17 AC 4,593 ms
45,860 KB
testcase_18 AC 4,550 ms
46,368 KB
testcase_19 AC 4,570 ms
46,608 KB
testcase_20 AC 3,941 ms
39,236 KB
testcase_21 AC 4,586 ms
47,012 KB
testcase_22 AC 2,189 ms
28,860 KB
testcase_23 AC 4,526 ms
45,760 KB
testcase_24 AC 4,676 ms
45,732 KB
testcase_25 AC 4,670 ms
47,016 KB
testcase_26 AC 4,706 ms
46,372 KB
testcase_27 AC 4,482 ms
45,868 KB
testcase_28 AC 4,583 ms
44,568 KB
testcase_29 AC 4,654 ms
46,104 KB
testcase_30 AC 4,507 ms
46,080 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines

mod=998244353
def NTT(polynomial1,polynomial2):
    if mod==998244353:
        prim_root=3
    else:
        prim_root=Primitive_Root(mod)
    prim_root_inve=MOD(mod).Pow(prim_root,-1)
    def DFT(polynomial,inverse=False):
        dft=polynomial+[0]*((1<<n)-len(polynomial))
        if inverse:
            for bit in range(1,n+1):
                a=1<<bit-1
                x=pow(prim_root,mod-1>>bit,mod)
                U=[1]
                for _ in range(a):
                    U.append(U[-1]*x%mod)
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        dft[s],dft[t]=(dft[s]+dft[t]*U[j])%mod,(dft[s]-dft[t]*U[j])%mod
            x=pow((mod+1)//2,n)
            for i in range(1<<n):
                dft[i]*=x
                dft[i]%=mod
        else:
            for bit in range(n,0,-1):
                a=1<<bit-1
                x=pow(prim_root_inve,mod-1>>bit,mod)
                U=[1]
                for _ in range(a):
                    U.append(U[-1]*x%mod)
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        dft[s],dft[t]=(dft[s]+dft[t])%mod,U[j]*(dft[s]-dft[t])%mod
        return dft

    n=(len(polynomial1)+len(polynomial2)-2).bit_length()
    ntt=[x*y%mod for x,y in zip(DFT(polynomial1),DFT(polynomial2))]
    ntt=DFT(ntt,inverse=True)
    return ntt

def Extended_Euclid(n,m):
    stack=[]
    while m:
        stack.append((n,m))
        n,m=m,n%m
    if n>=0:
        x,y=1,0
    else:
        x,y=-1,0
    for i in range(len(stack)-1,-1,-1):
        n,m=stack[i]
        x,y=y,x-(n//m)*y
    return x,y

class MOD:
    def __init__(self,p,e=1):
        self.p=p
        self.e=e
        self.mod=self.p**self.e

    def Pow(self,a,n):
        a%=self.mod
        if n>=0:
            return pow(a,n,self.mod)
        else:
            assert math.gcd(a,self.mod)==1
            x=Extended_Euclid(a,self.mod)[0]
            return pow(x,-n,self.mod)

    def Build_Fact(self,N):
        assert N>=0
        self.factorial=[1]
        self.cnt=[0]*(N+1)
        for i in range(1,N+1):
            ii=i
            self.cnt[i]=self.cnt[i-1]
            while ii%self.p==0:
                ii//=self.p
                self.cnt[i]+=1
            self.factorial.append((self.factorial[-1]*ii)%self.mod)
        self.factorial_inve=[None]*(N+1)
        self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
        for i in range(N-1,-1,-1):
            ii=i+1
            while ii%self.p==0:
                ii//=self.p
            self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod

    def Fact(self,N):
        return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod

    def Fact_Inve(self,N):
        if self.cnt[N]:
            return None
        return self.factorial_inve[N]

    def Comb(self,N,K,divisible_count=False):
        if K<0 or K>N:
            return 0
        retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod
        cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
        if divisible_count:
            return retu,cnt
        else:
            retu*=pow(self.p,cnt,self.mod)
            retu%=self.mod
            return retu

L,M,N=map(int,readline().split())
A=[0]*N
for a in map(int,readline().split()):
    A[a-1]+=1
while A and A[-1]==0:
    A.pop()
B=[0]*N
for b in map(int,readline().split()):
    B[b-1]+=1
while B and B[-1]==0:
    B.pop()
if len(A)<len(B):
    A,B=B,A
B=B[::-1]
Q=int(readline())
ans_lst=NTT(A,B)
l=len(B)
for ans in ans_lst[l-1:l-1+Q]:
    print(ans)
0