結果
| 問題 |
No.206 数の積集合を求めるクエリ
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2021-09-30 11:25:36 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
AC
|
| 実行時間 | 4,683 ms / 7,000 ms |
| コード長 | 4,274 bytes |
| コンパイル時間 | 116 ms |
| コンパイル使用メモリ | 13,184 KB |
| 実行使用メモリ | 47,756 KB |
| 最終ジャッジ日時 | 2024-07-17 14:50:17 |
| 合計ジャッジ時間 | 67,201 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 28 |
ソースコード
import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
mod=998244353
def NTT(polynomial1,polynomial2):
if mod==998244353:
prim_root=3
else:
prim_root=Primitive_Root(mod)
prim_root_inve=MOD(mod).Pow(prim_root,-1)
def DFT(polynomial,inverse=False):
dft=polynomial+[0]*((1<<n)-len(polynomial))
if inverse:
for bit in range(1,n+1):
a=1<<bit-1
x=pow(prim_root,mod-1>>bit,mod)
U=[1]
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
dft[s],dft[t]=(dft[s]+dft[t]*U[j])%mod,(dft[s]-dft[t]*U[j])%mod
x=pow((mod+1)//2,n)
for i in range(1<<n):
dft[i]*=x
dft[i]%=mod
else:
for bit in range(n,0,-1):
a=1<<bit-1
x=pow(prim_root_inve,mod-1>>bit,mod)
U=[1]
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
dft[s],dft[t]=(dft[s]+dft[t])%mod,U[j]*(dft[s]-dft[t])%mod
return dft
n=(len(polynomial1)+len(polynomial2)-2).bit_length()
ntt=[x*y%mod for x,y in zip(DFT(polynomial1),DFT(polynomial2))]
ntt=DFT(ntt,inverse=True)
return ntt
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=1):
self.p=p
self.e=e
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
self.cnt=[0]*(N+1)
for i in range(1,N+1):
ii=i
self.cnt[i]=self.cnt[i-1]
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append((self.factorial[-1]*ii)%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Fact(self,N):
return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod
def Fact_Inve(self,N):
if self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
L,M,N=map(int,readline().split())
A=[0]*N
for a in map(int,readline().split()):
A[a-1]+=1
B=[0]*N
for b in map(int,readline().split()):
B[b-1]+=1
B=B[::-1]
Q=int(readline())
ans_lst=NTT(A,B)
for ans in ans_lst[N-1:N-1+Q]:
print(ans)
vwxyz