結果

問題 No.1695 Mirror Mirror
ユーザー hitonanodehitonanode
提出日時 2021-10-01 21:58:18
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
(最新)
AC  
(最初)
実行時間 -
コード長 15,821 bytes
コンパイル時間 2,782 ms
コンパイル使用メモリ 196,760 KB
実行使用メモリ 52,392 KB
最終ジャッジ日時 2024-06-09 11:17:18
合計ジャッジ時間 7,585 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 3 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 3 ms
6,940 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 3 ms
6,944 KB
testcase_13 AC 2 ms
6,944 KB
testcase_14 AC 2 ms
6,940 KB
testcase_15 AC 2 ms
6,944 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 2 ms
6,940 KB
testcase_19 AC 2 ms
6,940 KB
testcase_20 AC 2 ms
6,940 KB
testcase_21 AC 94 ms
48,820 KB
testcase_22 AC 87 ms
47,160 KB
testcase_23 AC 114 ms
51,596 KB
testcase_24 AC 100 ms
46,588 KB
testcase_25 AC 66 ms
33,756 KB
testcase_26 AC 2 ms
5,376 KB
testcase_27 AC 2 ms
5,376 KB
testcase_28 AC 3 ms
5,376 KB
testcase_29 AC 2 ms
5,376 KB
testcase_30 AC 74 ms
34,560 KB
testcase_31 AC 100 ms
43,532 KB
testcase_32 AC 28 ms
13,344 KB
testcase_33 AC 117 ms
51,188 KB
testcase_34 AC 53 ms
23,836 KB
testcase_35 AC 102 ms
43,956 KB
testcase_36 AC 119 ms
52,392 KB
testcase_37 AC 43 ms
20,060 KB
testcase_38 AC 90 ms
40,564 KB
testcase_39 AC 37 ms
18,656 KB
testcase_40 AC 95 ms
43,700 KB
testcase_41 AC 98 ms
48,068 KB
testcase_42 AC 107 ms
46,252 KB
testcase_43 AC 71 ms
33,600 KB
testcase_44 AC 88 ms
38,556 KB
testcase_45 AC 68 ms
32,884 KB
testcase_46 AC 73 ms
36,948 KB
testcase_47 AC 77 ms
35,708 KB
testcase_48 AC 104 ms
45,088 KB
testcase_49 AC 98 ms
46,820 KB
testcase_50 AC 99 ms
45,112 KB
testcase_51 AC 110 ms
48,308 KB
testcase_52 AC 70 ms
34,660 KB
testcase_53 AC 4 ms
5,376 KB
testcase_54 AC 4 ms
5,376 KB
testcase_55 AC 68 ms
32,344 KB
testcase_56 AC 4 ms
5,376 KB
testcase_57 AC 79 ms
33,804 KB
testcase_58 AC 93 ms
41,508 KB
testcase_59 AC 84 ms
37,688 KB
testcase_60 AC 73 ms
33,464 KB
testcase_61 AC 3 ms
5,376 KB
testcase_62 AC 85 ms
44,696 KB
testcase_63 AC 90 ms
45,508 KB
testcase_64 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr)
#else
#define dbg(x) (x)
#define dbgif(cond, x) 0
#endif

// Manacher's Algorithm: radius of palindromes
// Input: std::string or std::vector<T> of length N
// Output: std::vector<int> of size N
// Complexity: O(N)
// Sample:
// - `sakanakanandaka` -> [1, 1, 2, 1, 4, 1, 4, 1, 2, 2, 1, 1, 1, 2, 1]
// Reference: https://snuke.hatenablog.com/entry/2014/12/02/235837
template <typename T> std::vector<int> manacher(const std::vector<T> &S) {
    std::vector<int> res(S.size());
    int i = 0, j = 0;
    while (i < int(S.size())) {
        while (i - j >= 0 and i + j < int(S.size()) and S[i - j] == S[i + j]) j++;
        res[i] = j;
        int k = 1;
        while (i - k >= 0 and i + k < int(S.size()) and k + res[i - k] < j) res[i + k] = res[i - k], k++;
        i += k, j -= k;
    }
    return res;
}
std::vector<int> manacher(const std::string &S) {
    std::vector<char> v(S.size());
    for (int i = 0; i < int(S.size()); i++) v[i] = S[i];
    return manacher(v);
}

template <typename T> std::vector<std::pair<int, int>> enumerate_palindromes(const std::vector<T> &vec) {
    std::vector<T> v;
    const int N = vec.size();
    for (int i = 0; i < N - 1; i++) {
        v.push_back(vec[i]);
        v.push_back(-1);
    }
    v.push_back(vec.back());
    const auto man = manacher(v);
    std::vector<std::pair<int, int>> ret;
    for (int i = 0; i < N * 2 - 1; i++) {
        if (i & 1) {
            int w = man[i] / 2;
            ret.emplace_back((i + 1) / 2 - w, (i + 1) / 2 + w);
        } else {
            int w = (man[i] - 1) / 2;
            ret.emplace_back(i / 2 - w, i / 2 + w + 1);
        }
    }
    return ret;
}

std::vector<std::pair<int, int>> enumerate_palindromes(const std::string &S) {
    std::vector<char> v(S.size());
    for (int i = 0; i < int(S.size()); i++) v[i] = S[i];
    return enumerate_palindromes<char>(v);
}

template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1> struct ShortestPath {
    int V, E;
    bool single_positive_weight;
    T wmin, wmax;
    std::vector<std::vector<std::pair<int, T>>> to;

    ShortestPath(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0), to(V) {}
    void add_edge(int s, int t, T w) {
        assert(0 <= s and s < V);
        assert(0 <= t and t < V);
        to[s].emplace_back(t, w);
        E++;
        if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;
        wmin = std::min(wmin, w);
        wmax = std::max(wmax, w);
    }

    std::vector<T> dist;
    std::vector<int> prev;

    // Dijkstra algorithm
    // Complexity: O(E log E)
    using Pque = std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<std::pair<T, int>>>;
    template <class Heap = Pque> void Dijkstra(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF);
        dist[s] = 0;
        prev.assign(V, INVALID);
        Heap pq;
        pq.emplace(0, s);
        while (!pq.empty()) {
            T d;
            int v;
            std::tie(d, v) = pq.top();
            pq.pop();
            if (dist[v] < d) continue;
            for (auto nx : to[v]) {
                T dnx = d + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    pq.emplace(dnx, nx.first);
                }
            }
        }
    }

    // Dijkstra algorithm, O(V^2 + E)
    void DijkstraVquad(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF);
        dist[s] = 0;
        prev.assign(V, INVALID);
        std::vector<char> fixed(V, false);
        while (true) {
            int r = INVALID;
            T dr = INF;
            for (int i = 0; i < V; i++) {
                if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i];
            }
            if (r == INVALID) break;
            fixed[r] = true;
            int nxt;
            T dx;
            for (auto p : to[r]) {
                std::tie(nxt, dx) = p;
                if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r;
            }
        }
    }

    // Bellman-Ford algorithm
    // Complexity: O(VE)
    bool BellmanFord(int s, int nb_loop) {
        assert(0 <= s and s < V);
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        for (int l = 0; l < nb_loop; l++) {
            bool upd = false;
            for (int v = 0; v < V; v++) {
                if (dist[v] == INF) continue;
                for (auto nx : to[v]) {
                    T dnx = dist[v] + nx.second;
                    if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true;
                }
            }
            if (!upd) return true;
        }
        return false;
    }

    // Bellman-ford algorithm using queue (deque)
    // Complexity: O(VE)
    // Requirement: no negative loop
    void SPFA(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF);
        prev.assign(V, INVALID);
        std::deque<int> q;
        std::vector<char> in_queue(V);
        dist[s] = 0;
        q.push_back(s), in_queue[s] = 1;
        while (!q.empty()) {
            int now = q.front();
            q.pop_front(), in_queue[now] = 0;
            for (auto nx : to[now]) {
                T dnx = dist[now] + nx.second;
                int nxt = nx.first;
                if (dist[nxt] > dnx) {
                    dist[nxt] = dnx;
                    if (!in_queue[nxt]) {
                        if (q.size() and dnx < dist[q.front()]) { // Small label first optimization
                            q.push_front(nxt);
                        } else {
                            q.push_back(nxt);
                        }
                        prev[nxt] = now, in_queue[nxt] = 1;
                    }
                }
            }
        }
    }

    void ZeroOneBFS(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        std::deque<int> que;
        que.push_back(s);
        while (!que.empty()) {
            int v = que.front();
            que.pop_front();
            for (auto nx : to[v]) {
                T dnx = dist[v] + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    if (nx.second) {
                        que.push_back(nx.first);
                    } else {
                        que.push_front(nx.first);
                    }
                }
            }
        }
    }

    bool dag_solver(int s) {
        assert(0 <= s and s < V);
        std::vector<int> indeg(V, 0);
        std::queue<int> que;
        que.push(s);
        while (que.size()) {
            int now = que.front();
            que.pop();
            for (auto nx : to[now]) {
                indeg[nx.first]++;
                if (indeg[nx.first] == 1) que.push(nx.first);
            }
        }
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        que.push(s);
        while (que.size()) {
            int now = que.front();
            que.pop();
            for (auto nx : to[now]) {
                indeg[nx.first]--;
                if (dist[nx.first] > dist[now] + nx.second)
                    dist[nx.first] = dist[now] + nx.second, prev[nx.first] = now;
                if (indeg[nx.first] == 0) que.push(nx.first);
            }
        }
        return *max_element(indeg.begin(), indeg.end()) == 0;
    }

    // Retrieve a sequence of vertex ids that represents shortest path [s, ..., goal]
    // If not reachable to goal, return {}
    std::vector<int> retrieve_path(int goal) const {
        assert(int(prev.size()) == V);
        assert(0 <= goal and goal < V);
        if (dist[goal] == INF) return {};
        std::vector<int> ret{goal};
        while (prev[goal] != INVALID) {
            goal = prev[goal];
            ret.push_back(goal);
        }
        std::reverse(ret.begin(), ret.end());
        return ret;
    }

    void solve(int s) {
        if (wmin >= 0) {
            if (single_positive_weight) {
                ZeroOneBFS(s);
            } else {
                if ((long long)V * V < (E << 4)) {
                    DijkstraVquad(s);
                } else {
                    Dijkstra(s);
                }
            }
        } else {
            BellmanFord(s, V);
        }
    }

    // Warshall-Floyd algorithm
    // Complexity: O(E + V^3)
    std::vector<std::vector<T>> dist2d;
    void WarshallFloyd() {
        dist2d.assign(V, std::vector<T>(V, INF));
        for (int i = 0; i < V; i++) {
            dist2d[i][i] = 0;
            for (auto p : to[i]) dist2d[i][p.first] = std::min(dist2d[i][p.first], p.second);
        }
        for (int k = 0; k < V; k++) {
            for (int i = 0; i < V; i++) {
                if (dist2d[i][k] == INF) continue;
                for (int j = 0; j < V; j++) {
                    if (dist2d[k][j] == INF) continue;
                    dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
                }
            }
        }
    }

    void dump_graphviz(std::string filename = "shortest_path") const {
        std::ofstream ss(filename + ".DOT");
        ss << "digraph{\n";
        for (int i = 0; i < V; i++) {
            for (const auto &e : to[i]) ss << i << "->" << e.first << "[label=" << e.second << "];\n";
        }
        ss << "}\n";
        ss.close();
        return;
    }
};


constexpr int INF = 1 << 28;
int solve(string S, string T) {
    int nmatch = 0;
    while (nmatch < min<int>(S.size(), T.size()) and S[nmatch] == T[nmatch]) nmatch++;
    if (!nmatch) return INF;
    if (T.size() % 2) return INF;
    auto trev = T;
    if (trev != T) return INF;
    ShortestPath<int> graph(T.size() + 1);
    REP(i, T.size()) graph.add_edge(i, i + 1, 0);
    auto ps = enumerate_palindromes(T);
    for (auto [l, r] : ps) {
        if ((l + r) % 2 == 0) graph.add_edge(r, (l + r) / 2, 1);
    }
    graph.solve(T.size());
    return graph.dist[nmatch];
    // for (int t = 0;; ++t) {
    //     if (int(T.size()) <= nmatch) return t;
    //     auto ps = enumerate_palindromes(T);
    //     int R = T.size();
    //     for (auto [l, r] : ps) {
    //         if (r == T.size() and (r - l) % 2 == 0) chmin(R, (l + r) / 2);
    //     }
    //     if (R == int(T.size())) return INF;
    //     T = T.substr(0, R);
    // }
}

int main() {
    int N, M;
    string S, T;
    cin >> N >> M >> S >> T;
    int ret = INF;
    REP(t, 2) {
        chmin(ret, solve(S, T));
        reverse(ALL(S));
    }
    cout << (ret < INF ? ret : -1) << '\n';
}
0