結果

問題 No.1693 Invasion
ユーザー torisasami4
提出日時 2021-10-01 22:01:46
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 42 ms / 2,000 ms
コード長 7,562 bytes
コンパイル時間 2,861 ms
コンパイル使用メモリ 225,920 KB
最終ジャッジ日時 2025-01-24 19:09:06
ジャッジサーバーID
(参考情報)
judge5 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb(...) emplace_back(__VA_ARGS__)
#define mp(a, b) make_pair(a, b)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define lscan(x) scanf("%I64d", &x)
#define lprint(x) printf("%I64d", x)
#define rep(i, n) for (ll i = 0; i < (n); i++)
#define rep2(i, n) for (ll i = (ll)n - 1; i >= 0; i--)
#define REP(i, l, r) for (ll i = l; i < (r); i++)
#define REP2(i, l, r) for (ll i = (ll)r - 1; i >= (l); i--)
#define siz(x) (ll) x.size()
template <class T>
using rque = priority_queue<T, vector<T>, greater<T>>;
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmax(T &a, const T &b) {
if (b > a) {
a = b;
return 1;
}
return 0;
}
ll gcd(ll a, ll b) {
if (a == 0)
return b;
if (b == 0)
return a;
ll cnt = a % b;
while (cnt != 0) {
a = b;
b = cnt;
cnt = a % b;
}
return b;
}
long long extGCD(long long a, long long b, long long &x, long long &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
long long d = extGCD(b, a % b, y, x);
y -= a / b * x;
return d;
}
struct UnionFind {
vector<ll> data;
int num;
UnionFind(int sz) {
data.assign(sz, -1);
num = sz;
}
bool unite(int x, int y) {
x = find(x), y = find(y);
if (x == y)
return (false);
if (data[x] > data[y])
swap(x, y);
data[x] += data[y];
data[y] = x;
num--;
return (true);
}
int find(int k) {
if (data[k] < 0)
return (k);
return (data[k] = find(data[k]));
}
ll size(int k) {
return (-data[find(k)]);
}
bool same(int x, int y) {
return find(x) == find(y);
}
};
template <int mod>
struct ModInt {
int x;
ModInt() : x(0) {
}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {
}
ModInt &operator+=(const ModInt &p) {
if ((x += p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if ((x += mod - p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const {
return ModInt(-x);
}
ModInt operator+(const ModInt &p) const {
return ModInt(*this) += p;
}
ModInt operator-(const ModInt &p) const {
return ModInt(*this) -= p;
}
ModInt &operator++() {
return *this += ModInt(1);
}
ModInt operator++(int) {
ModInt tmp = *this;
++*this;
return tmp;
}
ModInt &operator--() {
return *this -= ModInt(1);
}
ModInt operator--(int) {
ModInt tmp = *this;
--*this;
return tmp;
}
ModInt operator*(const ModInt &p) const {
return ModInt(*this) *= p;
}
ModInt operator/(const ModInt &p) const {
return ModInt(*this) /= p;
}
bool operator==(const ModInt &p) const {
return x == p.x;
}
bool operator!=(const ModInt &p) const {
return x != p.x;
}
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while (n > 0) {
if (n & 1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt<mod>(t);
return (is);
}
static int get_mod() {
return mod;
}
};
ll mpow2(ll x, ll n, ll mod) {
ll ans = 1;
while (n != 0) {
if (n & 1)
ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
return ans;
}
ll modinv2(ll a, ll mod) {
ll b = mod, u = 1, v = 0;
while (b) {
ll t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= mod;
if (u < 0)
u += mod;
return u;
}
// constexpr int mod = 1000000007;
constexpr int mod = 998244353;
// constexpr int mod = 31607;
using mint = ModInt<mod>;
mint mpow(mint x, ll n) {
mint ans = 1;
while (n != 0) {
if (n & 1)
ans *= x;
x *= x;
n = n >> 1;
}
return ans;
}
// ----- library -------
template <typename T>
struct Combination {
vector<T> _fac, _ifac;
Combination() {
init();
}
Combination(int n) {
init(n);
}
void init(int n = 2000010) {
_fac.resize(n + 1), _ifac.resize(n + 1);
_fac[0] = 1;
for (int i = 1; i <= n; i++)
_fac[i] = _fac[i - 1] * i;
_ifac[n] = _fac[n].inverse();
for (int i = n; i >= 1; i--)
_ifac[i - 1] = _ifac[i] * i;
}
T fac(int k) {
return _fac[k];
}
T ifac(int k) {
return _ifac[k];
}
T inv(int k) {
return fac(k - 1) * ifac(k);
}
T P(int n, int k) {
if (k < 0 || n < k)
return 0;
return fac(n) * ifac(n - k);
}
T C(int n, int k) {
if (k < 0 || n < k)
return 0;
return fac(n) * ifac(n - k) * ifac(k);
}
T H(int n, int k) { // kn
if (n < 0 || k < 0)
return 0;
return k == 0 ? 1 : C(n + k - 1, k);
}
T second_stirling_number(int n, int k) { // nk1
T ret = 0;
for (int i = 0; i <= k; i++) {
T tmp = C(k, i) * T(i).pow(n);
ret += ((k - i) & 1) ? -tmp : tmp;
}
return ret * ifac(k);
}
T bell_number(int n, int k) { // nk
if (n == 0)
return 1;
k = min(k, n);
vector<T> pref(k + 1);
pref[0] = 1;
for (int i = 1; i <= k; i++) {
if (i & 1)
pref[i] = pref[i - 1] - ifac(i);
else
pref[i] = pref[i - 1] + ifac(i);
}
T ret = 0;
for (int i = 1; i <= k; i++)
ret += T(i).pow(n) * ifac(i) * pref[k - i];
return ret;
}
};
using comb = Combination<mint>;
// ----- library -------
int main() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(15);
int n, m;
cin >> n >> m;
vector<int> a(n);
rep(i, n) cin >> a[i];
vector<int> dp(m + 1, 1e9);
dp[0] = 0;
rep(i, m) rep(j, n) if (i + a[j] <= m) chmin(dp[i + a[j]], dp[i] + 1);
mint ans = 0;
comb comb;
rep(i, m + 1) if (dp[i] <= 1e8) ans += comb.C(m - dp[i], i - dp[i]);
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0