結果

問題 No.1697 Deque House
ユーザー LayCurseLayCurse
提出日時 2021-10-02 00:04:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 8,133 bytes
コンパイル時間 2,962 ms
コンパイル使用メモリ 225,264 KB
実行使用メモリ 13,088 KB
最終ジャッジ日時 2024-07-19 17:28:06
合計ジャッジ時間 9,428 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 57 ms
5,376 KB
testcase_07 AC 591 ms
5,376 KB
testcase_08 AC 305 ms
5,376 KB
testcase_09 TLE -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator++(){
    val++;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator--(){
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return *this;
  }
  inline Modint operator++(int a){
    Modint res(*this);
    val++;
    if(val >= MD){
      val -= MD;
    }
    return res;
  }
  inline Modint operator--(int a){
    Modint res(*this);
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return res;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(int &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
template<class T, class S> inline T pow_L(T a, S b){
  T res = 1;
  res = 1;
  for(;;){
    if(b&1){
      res *= a;
    }
    b >>= 1;
    if(b==0){
      break;
    }
    a *= a;
  }
  return res;
}
inline double pow_L(double a, double b){
  return pow(a,b);
}
int main(){
  int i, loop;
  int N;
  rd(N);
  int K;
  rd(K);
  int A[N];
  {
    int Lj4PdHRW;
    for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){
      rd(A[Lj4PdHRW]);
    }
  }
  Modint dp[N+1];
  Modint dp1[N+1];
  Modint dp2[N+1];
  Modint cnt[N+1];
  Modint res = 0;
  Modint tmp;
  for(loop=(0);loop<(2);loop++){
    int i, t;
    for(i=(0);i<(N+1);i++){
      dp[i] = cnt[i] = 0;
    }
    cnt[0] = 1;
    for(t=(0);t<(K);t++){
      for(i=(N)-1;i>=(0);i--){
        int j;
        for(j=(0);j<(i);j++){
          int k;
          cnt[i] += cnt[j] * ((pow_L(Modint(2),(t * (i-j)))));
          dp[i] += dp[j] * ((pow_L(Modint(2),(t * (i-j)))));
          for(k=(j);k<(i);k++){
            dp[i] += ((pow_L(Modint(A[k]),t))) * cnt[j] * ((pow_L(Modint(2),(t * (i-j)))));
          }
        }
      }
    }
    if(loop==0){
      for(i=(0);i<(N+1);i++){
        dp1[i] = dp[i];
      }
    }
    if(loop==1){
      for(i=(0);i<(N+1);i++){
        dp2[i] = dp[i];
      }
    }
    reverse(A,A+N);
  }
  for(i=(0);i<(N);i++){
    int j;
    for(j=(i+1);j<(N);j++){
      int k;
      tmp = 0;
      for(k=(i);k<(j+1);k++){
        tmp += cnt[i] * cnt[N-j-1] * ((pow_L(Modint(A[k]),K)));
      }
      tmp += dp1[i] * cnt[N-j-1];
      tmp += dp2[N-1-j] * cnt[i];
      res += tmp * ((pow_L(Modint(2),(K * (j-i-1)))));
    }
  }
  wt_L(res);
  wt_L('\n');
  return 0;
}
// cLay version 20210926-1

// --- original code ---
// #define MD 998244353
// int @N, @K, @A[N];
// Modint dp[N+1], dp1[], dp2[], cnt[], res = 0, tmp;
// 
// rep(loop,2){
//   rep(i,N+1) dp[i] = cnt[i] = 0;
//   cnt[0] = 1;
//   rep(t,K){
//     rrep(i,N){
//       rep(j,i){
//         cnt[i] += cnt[j] * (Modint(2) ** (t * (i-j)));
//         dp[i] += dp[j] * (Modint(2) ** (t * (i-j)));
//         rep(k,j,i) dp[i] += (Modint(A[k]) ** t) * cnt[j] * (Modint(2) ** (t * (i-j)));
//       }
//     }
//   }
// 
//   if(loop==0) rep(i,N+1) dp1[i] = dp[i];
//   if(loop==1) rep(i,N+1) dp2[i] = dp[i];
//   reverse(A,A+N);
// }
// 
// // wt(dp1(N+1));
// // wt(dp2(N+1));
// // wt(cnt(N+1));
// 
// rep(i,N) rep(j,i+1,N){
//   tmp = 0;
//   rep(k,i,j+1) tmp += cnt[i] * cnt[N-j-1] * (Modint(A[k]) ** K);
//   tmp += dp1[i] * cnt[N-j-1];
//   tmp += dp2[N-1-j] * cnt[i];
//   res += tmp * (Modint(2) ** (K * (j-i-1)));
// }
// 
// wt(res);
0