結果

問題 No.1697 Deque House
ユーザー LayCurse
提出日時 2021-10-02 00:04:41
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 8,133 bytes
コンパイル時間 3,176 ms
コンパイル使用メモリ 224,892 KB
最終ジャッジ日時 2025-01-24 19:41:28
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 6 TLE * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator++(){
val++;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator--(){
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return *this;
}
inline Modint operator++(int a){
Modint res(*this);
val++;
if(val >= MD){
val -= MD;
}
return res;
}
inline Modint operator--(int a){
Modint res(*this);
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return res;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
template<class T, class S> inline T pow_L(T a, S b){
T res = 1;
res = 1;
for(;;){
if(b&1){
res *= a;
}
b >>= 1;
if(b==0){
break;
}
a *= a;
}
return res;
}
inline double pow_L(double a, double b){
return pow(a,b);
}
int main(){
int i, loop;
int N;
rd(N);
int K;
rd(K);
int A[N];
{
int Lj4PdHRW;
for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){
rd(A[Lj4PdHRW]);
}
}
Modint dp[N+1];
Modint dp1[N+1];
Modint dp2[N+1];
Modint cnt[N+1];
Modint res = 0;
Modint tmp;
for(loop=(0);loop<(2);loop++){
int i, t;
for(i=(0);i<(N+1);i++){
dp[i] = cnt[i] = 0;
}
cnt[0] = 1;
for(t=(0);t<(K);t++){
for(i=(N)-1;i>=(0);i--){
int j;
for(j=(0);j<(i);j++){
int k;
cnt[i] += cnt[j] * ((pow_L(Modint(2),(t * (i-j)))));
dp[i] += dp[j] * ((pow_L(Modint(2),(t * (i-j)))));
for(k=(j);k<(i);k++){
dp[i] += ((pow_L(Modint(A[k]),t))) * cnt[j] * ((pow_L(Modint(2),(t * (i-j)))));
}
}
}
}
if(loop==0){
for(i=(0);i<(N+1);i++){
dp1[i] = dp[i];
}
}
if(loop==1){
for(i=(0);i<(N+1);i++){
dp2[i] = dp[i];
}
}
reverse(A,A+N);
}
for(i=(0);i<(N);i++){
int j;
for(j=(i+1);j<(N);j++){
int k;
tmp = 0;
for(k=(i);k<(j+1);k++){
tmp += cnt[i] * cnt[N-j-1] * ((pow_L(Modint(A[k]),K)));
}
tmp += dp1[i] * cnt[N-j-1];
tmp += dp2[N-1-j] * cnt[i];
res += tmp * ((pow_L(Modint(2),(K * (j-i-1)))));
}
}
wt_L(res);
wt_L('\n');
return 0;
}
// cLay version 20210926-1
// --- original code ---
// #define MD 998244353
// int @N, @K, @A[N];
// Modint dp[N+1], dp1[], dp2[], cnt[], res = 0, tmp;
//
// rep(loop,2){
// rep(i,N+1) dp[i] = cnt[i] = 0;
// cnt[0] = 1;
// rep(t,K){
// rrep(i,N){
// rep(j,i){
// cnt[i] += cnt[j] * (Modint(2) ** (t * (i-j)));
// dp[i] += dp[j] * (Modint(2) ** (t * (i-j)));
// rep(k,j,i) dp[i] += (Modint(A[k]) ** t) * cnt[j] * (Modint(2) ** (t * (i-j)));
// }
// }
// }
//
// if(loop==0) rep(i,N+1) dp1[i] = dp[i];
// if(loop==1) rep(i,N+1) dp2[i] = dp[i];
// reverse(A,A+N);
// }
//
// // wt(dp1(N+1));
// // wt(dp2(N+1));
// // wt(cnt(N+1));
//
// rep(i,N) rep(j,i+1,N){
// tmp = 0;
// rep(k,i,j+1) tmp += cnt[i] * cnt[N-j-1] * (Modint(A[k]) ** K);
// tmp += dp1[i] * cnt[N-j-1];
// tmp += dp2[N-1-j] * cnt[i];
// res += tmp * (Modint(2) ** (K * (j-i-1)));
// }
//
// wt(res);
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0