結果
| 問題 |
No.1695 Mirror Mirror
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-10-02 18:27:19 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 11,639 bytes |
| コンパイル時間 | 14,404 ms |
| コンパイル使用メモリ | 378,204 KB |
| 実行使用メモリ | 102,284 KB |
| 最終ジャッジ日時 | 2024-07-20 13:22:53 |
| 合計ジャッジ時間 | 22,771 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 55 RE * 6 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
use std::io::Read;
fn get_word() -> String {
let stdin = std::io::stdin();
let mut stdin=stdin.lock();
let mut u8b: [u8; 1] = [0];
loop {
let mut buf: Vec<u8> = Vec::with_capacity(16);
loop {
let res = stdin.read(&mut u8b);
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
break;
} else {
buf.push(u8b[0]);
}
}
if buf.len() >= 1 {
let ret = String::from_utf8(buf).unwrap();
return ret;
}
}
}
#[allow(dead_code)]
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }
// https://github.com/rust-lang-ja/ac-library-rs/blob/master/src/string.rs
// Verified by: https://atcoder.jp/contests/abc213/submissions/25662432
fn sa_naive<T: Ord>(s: &[T]) -> Vec<usize> {
let n = s.len();
let mut sa: Vec<usize> = (0..n).collect();
sa.sort_by(|&(mut l), &(mut r)| {
if l == r {
return std::cmp::Ordering::Equal;
}
while l < n && r < n {
if s[l] != s[r] {
return s[l].cmp(&s[r]);
}
l += 1;
r += 1;
}
if l == n {
std::cmp::Ordering::Less
} else {
std::cmp::Ordering::Greater
}
});
sa
}
fn sa_doubling(s: &[i32]) -> Vec<usize> {
let n = s.len();
let mut sa: Vec<usize> = (0..n).collect();
let mut rnk: Vec<i32> = s.to_vec();
let mut tmp = vec![0; n];
let mut k = 1;
while k < n {
let cmp = |&x: &usize, &y: &usize| {
if rnk[x] != rnk[y] {
return rnk[x].cmp(&rnk[y]);
}
let rx = if x + k < n { rnk[x + k] } else { -1 };
let ry = if y + k < n { rnk[y + k] } else { -1 };
rx.cmp(&ry)
};
sa.sort_by(cmp);
tmp[sa[0]] = 0;
for i in 1..n {
tmp[sa[i]] = tmp[sa[i - 1]]
+ if cmp(&sa[i - 1], &sa[i]) == std::cmp::Ordering::Less {
1
} else {
0
};
}
std::mem::swap(&mut tmp, &mut rnk);
k *= 2;
}
sa
}
trait Threshold {
fn threshold_naive() -> usize;
fn threshold_doubling() -> usize;
}
enum DefaultThreshold {}
impl Threshold for DefaultThreshold {
fn threshold_naive() -> usize {
10
}
fn threshold_doubling() -> usize {
40
}
}
// |returned| = |s|
// Complexity: O(|s| upper)
#[allow(clippy::cognitive_complexity)]
fn sa_is<T: Threshold>(s: &[usize], upper: usize) -> Vec<usize> {
let n = s.len();
match n {
0 => return vec![],
1 => return vec![0],
2 => return if s[0] < s[1] { vec![0, 1] } else { vec![1, 0] },
_ => (),
}
if n < T::threshold_naive() {
return sa_naive(s);
}
if n < T::threshold_doubling() {
let s: Vec<i32> = s.iter().map(|&x| x as i32).collect();
return sa_doubling(&s);
}
let mut sa = vec![0; n];
let mut ls = vec![false; n];
for i in (0..n - 1).rev() {
ls[i] = if s[i] == s[i + 1] {
ls[i + 1]
} else {
s[i] < s[i + 1]
};
}
let mut sum_l = vec![0; upper + 1];
let mut sum_s = vec![0; upper + 1];
for i in 0..n {
if !ls[i] {
sum_s[s[i]] += 1;
} else {
sum_l[s[i] + 1] += 1;
}
}
for i in 0..=upper {
sum_s[i] += sum_l[i];
if i < upper {
sum_l[i + 1] += sum_s[i];
}
}
// sa's origin is 1.
let induce = |sa: &mut [usize], lms: &[usize]| {
for elem in sa.iter_mut() {
*elem = 0;
}
let mut buf = sum_s.clone();
for &d in lms {
if d == n {
continue;
}
let old = buf[s[d]];
buf[s[d]] += 1;
sa[old] = d + 1;
}
buf.copy_from_slice(&sum_l);
let old = buf[s[n - 1]];
buf[s[n - 1]] += 1;
sa[old] = n;
for i in 0..n {
let v = sa[i];
if v >= 2 && !ls[v - 2] {
let old = buf[s[v - 2]];
buf[s[v - 2]] += 1;
sa[old] = v - 1;
}
}
buf.copy_from_slice(&sum_l);
for i in (0..n).rev() {
let v = sa[i];
if v >= 2 && ls[v - 2] {
buf[s[v - 2] + 1] -= 1;
sa[buf[s[v - 2] + 1]] = v - 1;
}
}
};
// origin: 1
let mut lms_map = vec![0; n + 1];
let mut m = 0;
for i in 1..n {
if !ls[i - 1] && ls[i] {
lms_map[i] = m + 1;
m += 1;
}
}
let mut lms = Vec::with_capacity(m);
for i in 1..n {
if !ls[i - 1] && ls[i] {
lms.push(i);
}
}
assert_eq!(lms.len(), m);
induce(&mut sa, &lms);
if m > 0 {
let mut sorted_lms = Vec::with_capacity(m);
for &v in &sa {
if lms_map[v - 1] != 0 {
sorted_lms.push(v - 1);
}
}
let mut rec_s = vec![0; m];
let mut rec_upper = 0;
rec_s[lms_map[sorted_lms[0]] - 1] = 0;
for i in 1..m {
let mut l = sorted_lms[i - 1];
let mut r = sorted_lms[i];
let end_l = if lms_map[l] < m { lms[lms_map[l]] } else { n };
let end_r = if lms_map[r] < m { lms[lms_map[r]] } else { n };
let same = if end_l - l != end_r - r {
false
} else {
while l < end_l {
if s[l] != s[r] {
break;
}
l += 1;
r += 1;
}
l != n && s[l] == s[r]
};
if !same {
rec_upper += 1;
}
rec_s[lms_map[sorted_lms[i]] - 1] = rec_upper;
}
let rec_sa = sa_is::<T>(&rec_s, rec_upper);
for i in 0..m {
sorted_lms[i] = lms[rec_sa[i]];
}
induce(&mut sa, &mut sorted_lms);
}
for elem in sa.iter_mut() {
*elem -= 1;
}
sa
}
fn suffix_array_lowercase(s: &[char]) -> Vec<usize> {
let s: Vec<usize> = s.iter().map(|&x| (x as u8 - b'a') as usize).collect();
sa_is::<DefaultThreshold>(&s, 25)
}
struct LCP {
inv_sa: Vec<usize>,
spt: Vec<Vec<usize>>
}
impl LCP {
pub fn new<T: Ord>(s: &[T], sa: &[usize]) -> LCP {
let n = sa.len() - 1;
let mut inv_sa = vec![0; n + 1];
for i in 0 .. n + 1 {
inv_sa[sa[i]] = i;
}
let lcp = Self::create_lcp(s, sa);
let spt = Self::create_sparse_table(&lcp);
LCP {
inv_sa: inv_sa,
spt: spt,
}
}
fn create_lcp<T: Ord>(s: &[T], sa: &[usize]) -> Vec<usize> {
let n = s.len();
let mut rank = vec![0; n + 1];
let mut lcp = vec![0; n];
for i in 0 .. n + 1 {
rank[sa[i]] = i;
}
let mut h: usize = 0;
lcp[0] = 0;
for i in 0 .. n {
let j = sa[rank[i] - 1];
h = h.saturating_sub(1);
while j + h < n && i + h < n {
if s[j + h] != s[i + h] {
break;
}
h += 1;
}
lcp[rank[i] - 1] = h;
}
return lcp;
}
fn create_sparse_table(lcp: &[usize]) -> Vec<Vec<usize>> {
let n = lcp.len();
let mut h: usize = 1;
while (1 << h) <= n {
h += 1;
}
let mut st: Vec<Vec<usize>> = vec![Vec::new(); h];
st[0] = Vec::from(lcp);
for j in 1 .. h {
st[j] = vec![0; n + 1 - (1 << j)];
for i in 0 .. n + 1 - (1 << j) {
st[j][i] = std::cmp::min(
st[j - 1][i],
st[j - 1][i + 1_usize.wrapping_shl(j as u32 - 1)]);
}
}
return st;
}
pub fn get_lcp(&self, f: usize, s: usize) -> usize {
let f = self.inv_sa[f];
let s = self.inv_sa[s];
let (f, s) =
if f > s {
(s, f)
} else {
(f, s)
};
assert!(f < s);
let usize_size = usize::max_value().count_ones();
let diff = usize_size - 1 - (s - f).leading_zeros(); // topmost 1
return std::cmp::min(self.spt[diff as usize][f],
self.spt[diff as usize][s - 1_usize.wrapping_shl(diff)]);
}
}
/**
* Segment Tree. This data structure is useful for fast folding on intervals of an array
* whose elements are elements of monoid I. Note that constructing this tree requires the identity
* element of I and the operation of I.
* Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581)
* AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001)
* yukicoder No. 833 (https://yukicoder.me/submissions/703521)
*/
struct SegTree<I, BiOp> {
n: usize,
dat: Vec<I>,
op: BiOp,
e: I,
}
impl<I, BiOp> SegTree<I, BiOp>
where BiOp: Fn(I, I) -> I,
I: Copy {
pub fn new(n_: usize, op: BiOp, e: I) -> Self {
let mut n = 1;
while n < n_ { n *= 2; } // n is a power of 2
SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e}
}
/* ary[k] <- v */
pub fn update(&mut self, idx: usize, v: I) {
let mut k = idx + self.n - 1;
self.dat[k] = v;
while k > 0 {
k = (k - 1) / 2;
self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]);
}
}
/* [a, b) (note: half-inclusive)
* http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */
#[allow(unused)]
pub fn query(&self, mut a: usize, mut b: usize) -> I {
let mut left = self.e;
let mut right = self.e;
a += self.n - 1;
b += self.n - 1;
while a < b {
if (a & 1) == 0 {
left = (self.op)(left, self.dat[a]);
}
if (b & 1) == 0 {
right = (self.op)(self.dat[b - 1], right);
}
a = a / 2;
b = (b - 1) / 2;
}
(self.op)(left, right)
}
}
const INF: i64 = 1 << 50;
fn solve(s: &[char], t: &[char]) -> i64 {
let n = s.len();
let m = t.len() / 2;
let mut dp = vec![INF; m + 1];
dp[m] = 0;
let mut st = SegTree::new(m + 1, min, INF);
st.update(m, 0);
let mut sa = suffix_array_lowercase(&t);
sa.insert(0, 2 * m);
let lcp = LCP::new(&t, &sa);
for i in (0..m).rev() {
let len = lcp.get_lcp(i, 2 * m - i);
if len > 0 {
dp[i] = 1 + st.query(i + 1, i + len + 1);
}
st.update(i, dp[i]);
}
let mut ans = dp[0];
for i in 0..n {
if i < m && s[i] == t[i] {
ans = min(ans, dp[i + 1]);
} else {
break;
}
}
ans
}
fn main() {
let _n: usize = get();
let m: usize = get();
let s: Vec<char> = get_word().chars().collect();
let t: Vec<char> = get_word().chars().collect();
if s == t {
println!("0");
return;
}
let mut revt = t.clone();
revt.reverse();
if m % 2 != 0 || t != revt {
println!("-1");
return;
}
let mut mi = solve(&s, &t);
let mut s = s;
s.reverse();
mi = min(mi, solve(&s, &t));
println!("{}", if mi >= INF { -1 } else { mi + 1 });
}