結果
問題 | No.1270 Range Arrange Query |
ユーザー |
|
提出日時 | 2021-10-03 11:23:48 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 1,973 ms / 7,000 ms |
コード長 | 7,159 bytes |
コンパイル時間 | 14,319 ms |
コンパイル使用メモリ | 384,908 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-21 05:08:50 |
合計ジャッジ時間 | 25,431 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 15 |
ソースコード
use std::io::{Write, BufWriter};// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr,) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, usize1) => (read_value!($next, usize) - 1);($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));}/*** Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array* whose elements are elements of monoid T. Note that constructing this tree requires the identity* element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)* Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261* Verified by https://codeforces.com/contest/1114/submission/49759034*/pub trait ActionRing {type T: Clone + Copy; // datatype U: Clone + Copy + PartialEq + Eq; // actionfn biop(x: Self::T, y: Self::T) -> Self::T;fn update(x: Self::T, a: Self::U, height: usize) -> Self::T;fn upop(fst: Self::U, snd: Self::U) -> Self::U;fn e() -> Self::T;fn upe() -> Self::U; // identity for upop}pub struct LazySegTree<R: ActionRing> {n: usize,dep: usize,dat: Vec<R::T>,lazy: Vec<R::U>,}impl<R: ActionRing> LazySegTree<R> {#[allow(unused)]pub fn new(n_: usize) -> Self {let mut n = 1;let mut dep = 0;while n < n_ { n *= 2; dep += 1; } // n is a power of 2LazySegTree {n: n,dep: dep,dat: vec![R::e(); 2 * n - 1],lazy: vec![R::upe(); 2 * n - 1]}}#[allow(unused)]pub fn with(a: &[R::T]) -> Self {let n_ = a.len();let mut n = 1;let mut dep = 0;while n < n_ { n *= 2; dep += 1; } // n is a power of 2let mut dat = vec![R::e(); 2 * n - 1];for i in 0..n_ {dat[n - 1 + i] = a[i];}for i in (0..n - 1).rev() {dat[i] = R::biop(dat[2 * i + 1], dat[2 * i + 2]);}LazySegTree {n: n,dep: dep,dat: dat,lazy: vec![R::upe(); 2 * n - 1],}}#[inline]fn lazy_evaluate_node(&mut self, k: usize, height: usize) {if self.lazy[k] == R::upe() { return; }self.dat[k] = R::update(self.dat[k], self.lazy[k], height);if k < self.n - 1 {self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);}self.lazy[k] = R::upe(); // identity for upop}#[inline]fn update_node(&mut self, k: usize) {self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]);}fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) {self.lazy_evaluate_node(k, height);// [a,b) and [l,r) intersects?if r <= a || b <= l {return;}if a <= l && r <= b {self.lazy[k] = R::upop(self.lazy[k], v);self.lazy_evaluate_node(k, height);return;}self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2);self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r);self.update_node(k);}/* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */#[inline]pub fn update(&mut self, a: usize, b: usize, v: R::U) {let n = self.n;let dep = self.dep;self.update_sub(a, b, v, 0, dep, 0, n);}/* l,r are for simplicity */fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T {self.lazy_evaluate_node(k, height);// [a,b) and [l,r) intersect?if r <= a || b <= l {return R::e();}if a <= l && r <= b {return self.dat[k];}let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2);let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r);self.update_node(k);R::biop(vl, vr)}/* [a, b) (note: half-inclusive) */#[inline]pub fn query(&mut self, a: usize, b: usize) -> R::T {let n = self.n;let dep = self.dep;self.query_sub(a, b, 0, dep, 0, n)}}enum AddMin {}const INF: i64 = 1 << 50;impl ActionRing for AddMin {type T = i64; // datatype U = i64; // action, a |-> x |-> a + xfn biop(x: Self::T, y: Self::T) -> Self::T {std::cmp::min(x, y)}fn update(x: Self::T, a: Self::U, _height: usize) -> Self::T {x + a}fn upop(fst: Self::U, snd: Self::U) -> Self::U {fst + snd}fn e() -> Self::T {INF}fn upe() -> Self::U { // identity for upop0}}// Tags: mos-algorithmfn main() {let out = std::io::stdout();let mut out = BufWriter::new(out.lock());macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}input! {n: usize, q: usize,a: [usize1; n],lr: [(usize1, usize); q],}let mut lri = vec![(0, 0, 0); q];for i in 0..q {let (l, r) = lr[i];lri[i] = (l, r, i);}const B: usize = 300;lri.sort_by_key(|&(l, r, _)| {let q = l / B;(q, if q % 2 == 0 {r} else {n - r})});let mut ans = vec![0; q];let mut x = 0;let mut y = n;let mut inv = 0i64;let mut side = LazySegTree::<AddMin>::with(&vec![0; n]);for &(l, r, idx) in &lri {while y < r {let v = a[y];side.update(v + 1, n, -1);inv -= side.query(v, v + 1);y += 1;}while x > l {x -= 1;let v = a[x];side.update(0, v, -1);inv -= side.query(v, v + 1);}while y > r {y -= 1;let v = a[y];inv += side.query(v, v + 1);side.update(v + 1, n, 1);}while x < l {let v = a[x];inv += side.query(v, v + 1);side.update(0, v, 1);x += 1;}ans[idx] = inv + side.query(0, n) * (r - l) as i64;}for i in 0..q {puts!("{}\n", ans[i]);}}