結果
| 問題 | No.879 Range Mod 2 Query |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-10-05 10:04:18 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 657 ms / 3,000 ms |
| コード長 | 7,090 bytes |
| 記録 | |
| コンパイル時間 | 12,529 ms |
| コンパイル使用メモリ | 402,740 KB |
| 実行使用メモリ | 28,956 KB |
| 最終ジャッジ日時 | 2024-07-23 02:33:20 |
| 合計ジャッジ時間 | 20,226 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 21 |
ソースコード
use std::io::Read;
fn get_word() -> String {
let stdin = std::io::stdin();
let mut stdin=stdin.lock();
let mut u8b: [u8; 1] = [0];
loop {
let mut buf: Vec<u8> = Vec::with_capacity(16);
loop {
let res = stdin.read(&mut u8b);
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
break;
} else {
buf.push(u8b[0]);
}
}
if buf.len() >= 1 {
let ret = String::from_utf8(buf).unwrap();
return ret;
}
}
}
#[allow(dead_code)]
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }
/**
* Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
* whose elements are elements of monoid T. Note that constructing this tree requires the identity
* element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
* Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261
* Verified by https://codeforces.com/contest/1114/submission/49759034
*/
pub trait ActionRing {
type T: Clone + Copy; // data
type U: Clone + Copy + PartialEq + Eq; // action
fn biop(x: Self::T, y: Self::T) -> Self::T;
fn update(x: Self::T, a: Self::U, height: usize) -> Self::T;
fn upop(fst: Self::U, snd: Self::U) -> Self::U;
fn e() -> Self::T;
fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTree<R: ActionRing> {
n: usize,
dep: usize,
dat: Vec<R::T>,
lazy: Vec<R::U>,
}
impl<R: ActionRing> LazySegTree<R> {
#[allow(unused)]
pub fn new(n_: usize) -> Self {
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
LazySegTree {
n: n,
dep: dep,
dat: vec![R::e(); 2 * n - 1],
lazy: vec![R::upe(); 2 * n - 1]
}
}
#[allow(unused)]
pub fn with(a: &[R::T]) -> Self {
let n_ = a.len();
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
let mut dat = vec![R::e(); 2 * n - 1];
for i in 0..n_ {
dat[n - 1 + i] = a[i];
}
for i in (0..n - 1).rev() {
dat[i] = R::biop(dat[2 * i + 1], dat[2 * i + 2]);
}
LazySegTree {
n: n,
dep: dep,
dat: dat,
lazy: vec![R::upe(); 2 * n - 1],
}
}
#[inline]
fn lazy_evaluate_node(&mut self, k: usize, height: usize) {
if self.lazy[k] == R::upe() { return; }
self.dat[k] = R::update(self.dat[k], self.lazy[k], height);
if k < self.n - 1 {
self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);
self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);
}
self.lazy[k] = R::upe(); // identity for upop
}
#[inline]
fn update_node(&mut self, k: usize) {
self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]);
}
fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) {
self.lazy_evaluate_node(k, height);
// [a,b) and [l,r) intersects?
if r <= a || b <= l {return;}
if a <= l && r <= b {
self.lazy[k] = R::upop(self.lazy[k], v);
self.lazy_evaluate_node(k, height);
return;
}
self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2);
self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r);
self.update_node(k);
}
/* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */
#[inline]
pub fn update(&mut self, a: usize, b: usize, v: R::U) {
let n = self.n;
let dep = self.dep;
self.update_sub(a, b, v, 0, dep, 0, n);
}
/* l,r are for simplicity */
fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T {
self.lazy_evaluate_node(k, height);
// [a,b) and [l,r) intersect?
if r <= a || b <= l {return R::e();}
if a <= l && r <= b {return self.dat[k];}
let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2);
let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r);
self.update_node(k);
R::biop(vl, vr)
}
/* [a, b) (note: half-inclusive) */
#[inline]
pub fn query(&mut self, a: usize, b: usize) -> R::T {
let n = self.n;
let dep = self.dep;
self.query_sub(a, b, 0, dep, 0, n)
}
}
enum V {}
const B: usize = 3;
impl ActionRing for V {
type T = [i64; B]; // data
type U = [[i64; B]; B]; // action, (a, b) |-> x |-> ax + b
fn biop(x: Self::T, y: Self::T) -> Self::T {
let mut ans = [0.into(); B];
for i in 0..B {
ans[i] = x[i] + y[i];
}
ans
}
fn update(x: Self::T, o: Self::U, _height: usize) -> Self::T {
let mut ans = [0.into(); B];
for i in 0..B {
for j in 0..B {
ans[j] += x[i] * o[i][j];
}
}
ans
}
fn upop(fst: Self::U, snd: Self::U) -> Self::U {
let mut ans = [[0.into(); B]; B];
for i in 0..B {
for j in 0..B {
for k in 0..B {
ans[i][k] += fst[i][j] * snd[j][k];
}
}
}
ans
}
fn e() -> Self::T {
[0.into(); B]
}
fn upe() -> Self::U { // identity for upop
let mut ans = [[0.into(); B]; B];
for i in 0..B {
ans[i][i] = 1.into();
}
ans
}
}
// Tags: lazy-segment-trees, linear-transformations
fn main() {
let n: usize = get();
let q: usize = get();
let a: Vec<i64> = (0..n).map(|_| get()).collect();
let mut b = vec![[0, 0, 1]; n];
for i in 0..n {
b[i][1] = a[i] / 2 * 2;
if a[i] % 2 == 0 {
b[i][0] = -1;
} else {
b[i][0] = 1;
}
}
let mut st = LazySegTree::<V>::with(&b);
for _ in 0..q {
let ty: i32 = get();
let l = get::<usize>() - 1;
let r: usize = get();
if ty == 3 {
let s = st.query(l, r);
println!("{}", s[1] + (s[2] + s[0]) / 2);
} else if ty == 2 {
let x: i64 = get();
let mut tr = [[0; B]; B];
for i in 0..B {
tr[i][i] = 1;
}
tr[2][1] = x / 2 * 2;
st.update(l, r, tr);
if x % 2 == 1 {
let mut tr = [[0; B]; B];
for i in 0..B {
tr[i][i] = 1;
}
tr[0][0] = -1;
tr[2][1] = 1;
tr[0][1] = 1;
st.update(l, r, tr);
}
} else {
let mut tr = [[0; B]; B];
tr[0][0] = 1;
tr[2][2] = 1;
st.update(l, r, tr);
}
}
}