結果
問題 | No.255 Splarrraaay スプラーレェーーイ |
ユーザー |
|
提出日時 | 2021-10-06 12:46:43 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 1,922 ms / 10,000 ms |
コード長 | 7,318 bytes |
コンパイル時間 | 13,344 ms |
コンパイル使用メモリ | 401,792 KB |
実行使用メモリ | 165,884 KB |
最終ジャッジ日時 | 2024-07-23 02:50:51 |
合計ジャッジ時間 | 33,813 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 10 |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr,) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));}/*** Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array* whose elements are elements of monoid T. Note that constructing this tree requires the identity* element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)* Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261* Verified by https://codeforces.com/contest/1114/submission/49759034*/pub trait ActionRing {type T: Clone + Copy; // datatype U: Clone + Copy + PartialEq + Eq; // actionfn biop(x: Self::T, y: Self::T) -> Self::T;fn update(x: Self::T, a: Self::U, height: usize) -> Self::T;fn upop(fst: Self::U, snd: Self::U) -> Self::U;fn e() -> Self::T;fn upe() -> Self::U; // identity for upop}pub struct LazySegTree<R: ActionRing> {n: usize,dep: usize,dat: Vec<R::T>,lazy: Vec<R::U>,}impl<R: ActionRing> LazySegTree<R> {#[allow(unused)]pub fn new(n_: usize) -> Self {let mut n = 1;let mut dep = 0;while n < n_ { n *= 2; dep += 1; } // n is a power of 2LazySegTree {n: n,dep: dep,dat: vec![R::e(); 2 * n - 1],lazy: vec![R::upe(); 2 * n - 1]}}#[allow(unused)]pub fn with(a: &[R::T]) -> Self {let n_ = a.len();let mut n = 1;let mut dep = 0;while n < n_ { n *= 2; dep += 1; } // n is a power of 2let mut dat = vec![R::e(); 2 * n - 1];for i in 0..n_ {dat[n - 1 + i] = a[i];}for i in (0..n - 1).rev() {dat[i] = R::biop(dat[2 * i + 1], dat[2 * i + 2]);}LazySegTree {n: n,dep: dep,dat: dat,lazy: vec![R::upe(); 2 * n - 1],}}#[inline]fn lazy_evaluate_node(&mut self, k: usize, height: usize) {if self.lazy[k] == R::upe() { return; }self.dat[k] = R::update(self.dat[k], self.lazy[k], height);if k < self.n - 1 {self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);}self.lazy[k] = R::upe(); // identity for upop}#[inline]fn update_node(&mut self, k: usize) {self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]);}fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) {self.lazy_evaluate_node(k, height);// [a,b) and [l,r) intersects?if r <= a || b <= l {return;}if a <= l && r <= b {self.lazy[k] = R::upop(self.lazy[k], v);self.lazy_evaluate_node(k, height);return;}self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2);self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r);self.update_node(k);}/* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */#[inline]pub fn update(&mut self, a: usize, b: usize, v: R::U) {let n = self.n;let dep = self.dep;self.update_sub(a, b, v, 0, dep, 0, n);}/* l,r are for simplicity */fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T {self.lazy_evaluate_node(k, height);// [a,b) and [l,r) intersect?if r <= a || b <= l {return R::e();}if a <= l && r <= b {return self.dat[k];}let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2);let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r);self.update_node(k);R::biop(vl, vr)}/* [a, b) (note: half-inclusive) */#[inline]pub fn query(&mut self, a: usize, b: usize) -> R::T {let n = self.n;let dep = self.dep;self.query_sub(a, b, 0, dep, 0, n)}}enum VFix {}const B: usize = 2;impl ActionRing for VFix {type T = [i64; B]; // datatype U = [i64; B]; // action, [[a, 0], [b, 1]]fn biop(x: Self::T, y: Self::T) -> Self::T {let mut ans = [0.into(); B];for i in 0..B {ans[i] = x[i] + y[i];}ans}fn update(x: Self::T, o: Self::U, _height: usize) -> Self::T {let mut ans = [0.into(); B];for i in 0..B {ans[0] += x[i] * o[i];}ans[1] = x[1];ans}fn upop(fst: Self::U, snd: Self::U) -> Self::U {let mut ans = [0.into(); B];for i in 0..B {ans[i] += fst[i] * snd[0];}ans[1] += snd[1];ans}fn e() -> Self::T {[0.into(); B]}fn upe() -> Self::U { // identity for upop[1, 0]}}const MOD: i64 = 1_000_000_000_000_000_009;fn main() {input! {n: i64,q: usize,xlr: [(i32, i64, i64); q],}let mut coo = vec![0, n];for &(_, l, r) in &xlr {coo.push(l);coo.push(r + 1);}coo.sort(); coo.dedup();let m = coo.len() - 1;let mut st = vec![];let mut a = vec![[0; B]; m];for i in 0..m {a[i][1] = coo[i + 1] - coo[i];}for _ in 0..5 {st.push(LazySegTree::<VFix>::with(&a));}let mut sc = [0; 5];for (x, l, r) in xlr {let l = coo.binary_search(&l).unwrap();let r = coo.binary_search(&(r + 1)).unwrap();if x == 0 {let mut val = [(0, 0); 5];for i in 0..5 {val[i] = (st[i].query(l, r)[0], i);}val.sort(); val.reverse();if val[0].0 > val[1].0 {sc[val[0].1] += val[0].0;sc[val[0].1] %= MOD;}} else {let idx = x as usize - 1;for i in 0..5 {if i == idx {st[i].update(l, r, [1, 1]);} else {st[i].update(l, r, [0, 0]);}}}}for i in 0..5 {sc[i] += st[i].query(0, m)[0];sc[i] %= MOD;}println!("{} {} {} {} {}", sc[0], sc[1], sc[2], sc[3], sc[4]);}