結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
nonamae
|
| 提出日時 | 2021-10-07 08:56:20 |
| 言語 | C (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 33 ms / 9,973 ms |
| コード長 | 9,043 bytes |
| コンパイル時間 | 399 ms |
| コンパイル使用メモリ | 38,016 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-16 23:40:43 |
| 合計ジャッジ時間 | 1,035 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
コンパイルメッセージ
main.c: In function 'read_int':
main.c:38:14: warning: implicit declaration of function 'getchar_unlocked' [-Wimplicit-function-declaration]
38 | while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
| ^~~~~~~~~~~~~~~~
main.c: In function 'write_int':
main.c:65:5: warning: implicit declaration of function 'putchar_unlocked' [-Wimplicit-function-declaration]
65 | putchar_unlocked('-');
| ^~~~~~~~~~~~~~~~
ソースコード
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
/* signed integer */
typedef int8_t i8;
typedef int16_t i16;
typedef int32_t i32;
typedef int64_t i64;
typedef __int128_t i128;
/* unsigned integer */
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
typedef __uint128_t u128;
/* floating point number */
typedef float f32;
typedef double f64;
typedef long double f80;
typedef int FastInt;
/* io */
static inline FastInt read_int(void) {
FastInt c, x = 0, f = 1;
while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return f * x;
}
static inline i64 in(void) {
i64 c, x = 0, f = 1;
while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return f * x;
}
static inline u64 inu(void) {
u64 c, x = 0;
while (c = getchar_unlocked(), c < 48 || c > 57);
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return x;
}
static inline void write_int(FastInt x) {
if (x < 0) {
putchar_unlocked('-');
x = -x;
}
if (x >= 10) write_int(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void out(i64 x) {
if (x < 0) {
putchar_unlocked('-');
x = -x;
}
if (x >= 10) out(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void outu(u64 x) {
if (x >= 10) outu(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void NL(void) { putchar_unlocked('\n'); }
static inline void SP(void) { putchar_unlocked(' '); }
/* MACROS */
#define POPCNT(a) __builtin_popcountll((a))
#define CTZ(a) __builtin_ctzll((a))
#define CLZ(a) __builtin_clzll((a))
#define LSBit(a) ((a)&(-(a)))
#define CLSBit(a) ((a)&((a)-(1)))
#define HAS_SINGLE_BIT(a) (POPCNT((a))==1)
#define BIT_CEIL(a) ((!(a))?(1):((POPCNT(a))==(1)?((1ull)<<((63)-CLZ((a)))):((1ull)<<((64)-CLZ(a)))))
#define BIT_FLOOR(a) ((!(a))?(0):((1ull)<<((63)-CLZ((a)))))
#define BIT_WIDTH(a) ((a)?((64)-CLZ((a))):(0))
#define _ROTL(x, s) (((x)<<((s)%(64)))|(((x)>>((64)-((s)%(64))))))
#define _ROTR(x, s) (((x)>>((s)%(64)))|(((x)<<((64)-((s)%(64))))))
#define ROTL(x, s) (((s)==(0))?(0):(((s)<(0))?(_ROTR((x),-(s))):(_ROTL((x),(s)))))
#define ROTR(x, s) (((s)==(0))?(0):(((s)<(0))?(_ROTL((x),-(s))):(_ROTR((x),(s)))))
#define SWAP(a, b) (((a)^=(b)),((b)^=(a)),((a)^=(b)))
#define MAX(a, b) ((a)>(b)?(a):(b))
#define MIN(a, b) ((a)<(b)?(a):(b))
i64 _gcd_(i64 a, i64 b) {
// assert(a >= 0 && b >= 0);
if (!a || !b) return a | b;
FastInt shift = CTZ(a | b);
a >>= CTZ(a);
do {
b >>= CTZ(b);
if (a > b) SWAP(a, b);
b -= a;
} while (b);
return a << shift;
}
i64 _lcm_(i64 a, i64 b) {
// assert(a >= 0 && b >= 0);
return a / _gcd_(a, b) * b;
}
/* montgomery modular multiplication 32-bit */
typedef u32 Montgomery;
Montgomery _one(u32 mod) {
return -1u % mod + 1;
}
Montgomery _r2(u32 mod) {
return (u64)(i64)-1 % mod + 1;
}
Montgomery _inv(u32 mod) {
u32 u = 1, v = 0, x = 1ULL << 31;
for (FastInt i = 0; i < 32; i++) {
if (u & 1) u = (u + mod) >> 1, v = (v >> 1) + x;
else u >>= 1, v >>= 1;
}
return -v;
}
Montgomery _MR(u64 a, Montgomery inv, u32 mod) {
i32 z = (a >> 32) - ((((u32)a * inv) * (u64)mod) >> 32);
return z < 0 ? z + mod : (u64)z;
}
Montgomery _to_montgomery(u32 a, Montgomery r2, Montgomery inv, u32 mod) {
return _MR((u64)a * r2, inv, mod);
}
u32 _from_montgomery(Montgomery A, Montgomery inv, u32 mod) {
return _MR((u64)A, inv, mod) % mod;
}
Montgomery add_MR(Montgomery A, Montgomery B, Montgomery r2, Montgomery inv, u32 mod) {
if ((i32)(A += B - 2 * mod) < 0) A += 2 * mod;
return A;
}
Montgomery sub_MR(Montgomery A, Montgomery B, Montgomery r2, Montgomery inv, u32 mod) {
if ((i32)(A -= B) < 0) A += 2 * mod;
return A;
}
Montgomery min_MR(Montgomery A, Montgomery r2, Montgomery inv, u32 mod) {
return sub_MR(0, A, r2, inv, mod);
}
Montgomery mul_MR(Montgomery A, Montgomery B, Montgomery inv, u32 mod) {
return _MR((u64)A * B, inv, mod);
}
Montgomery pow_MR(Montgomery A, i64 n, Montgomery inv, u32 mod) {
Montgomery ret = _one(mod);
while (n > 0) {
if (n & 1) ret = mul_MR(ret, A, inv, mod);
A = mul_MR(A, A, inv, mod);
n >>= 1;
}
return ret;
}
Montgomery inv_MR(Montgomery A, Montgomery inv, u32 mod) {
return pow_MR(A, (i64)mod - 2, inv, mod);
}
Montgomery div_MR(Montgomery A, Montgomery B, Montgomery inv, u32 mod) {
return mul_MR(A, inv_MR(B, inv, mod), inv, mod);
}
bool eq_MR(Montgomery A, Montgomery B, Montgomery inv, u32 mod) {
return _from_montgomery(A, inv, mod) == _from_montgomery(B, inv, mod);
}
bool neq_MR(Montgomery A, Montgomery B, Montgomery inv, u32 mod) {
return _from_montgomery(A, inv, mod) != _from_montgomery(B, inv, mod);
}
bool is_prime(u32 n) {
// assert(n < 4759123141);
if (n <= 3) return n == 2 || n == 3;
if (!(n & 1)) return false;
Montgomery r2 = _r2(n);
Montgomery inv = _inv(n);
u32 s = CTZ(n - 1);
u32 d = (n - 1) >> s;
u32 as[] = {2, 7, 61};
Montgomery e = _one(n);
Montgomery rev = _to_montgomery(n - 1, r2, inv, n);
for (FastInt i = 0; i < 3; i++) {
Montgomery A = _to_montgomery(as[i], r2, inv, n);
if (A == 0) return true;
Montgomery res = pow_MR(A, d, inv, n);
if (res == e) continue;
bool ok = true;
for (u32 r = 0; r < s; r++) {
if (res == rev) {
ok = false;
break;
}
res = mul_MR(res, res, inv, n);
}
if (ok) return false;
}
return true;
}
/* montgomery modular multiplication 64-bit */
typedef u64 Montgomery64;
Montgomery64 _one_64(u64 mod) {
return -1ull % mod + 1;
}
Montgomery64 _r2_64(u64 mod) {
return (u128)(i128)-1 % mod + 1;
}
Montgomery64 _inv_64(u64 mod) {
u64 u = 1, v = 0, x = 1ULL << 63;
for (FastInt i = 0; i < 64; i++) {
if (u & 1) u = (u + mod) >> 1, v = (v >> 1) + x;
else u >>= 1, v >>= 1;
}
return -v;
}
Montgomery64 _MR_64(u128 a, Montgomery64 inv, u64 mod) {
i64 A = (a >> 64) - ((((u64)a * inv) * (u128)mod) >> 64);
return A < 0 ? A + mod : (u64)A;
}
Montgomery64 _to_montgomery_64(u64 a, Montgomery64 r2, Montgomery64 inv, u64 mod) {
return _MR_64((u128)a * r2, inv, mod);
}
u64 _from_montgomery_64(Montgomery64 A, Montgomery64 inv, u64 mod) {
return _MR_64((u128)A, inv, mod) % mod;
}
Montgomery64 add_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 r2, Montgomery64 inv, u64 mod) {
if ((i64)(A += B - 2 * mod) < 0) A += 2 * mod;
return A;
}
Montgomery64 sub_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 r2, Montgomery64 inv, u64 mod) {
if ((i64)(A -= B) < 0) A += 2 * mod;
return A;
}
Montgomery64 min_MR_64(Montgomery64 A, Montgomery64 r2, Montgomery64 inv, u64 mod) {
return sub_MR_64(0, A, r2, inv, mod);
}
Montgomery64 mul_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 inv, u64 mod) {
return _MR_64((u128)A * B, inv, mod);
}
Montgomery64 pow_MR_64(Montgomery64 A, i64 n, Montgomery64 inv, u64 mod) {
Montgomery64 ret = _one_64(mod), mul = A;
while (n > 0) {
if (n & 1) ret = mul_MR_64(ret, mul, inv, mod);
mul = mul_MR_64(mul, mul, inv, mod);
n >>= 1;
}
return ret;
}
Montgomery64 inv_MR_64(Montgomery64 A, Montgomery64 inv, u64 mod) {
return pow_MR_64(A, (i64)mod - 2, inv, mod);
}
Montgomery64 div_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 inv, u64 mod) {
return mul_MR_64(A, inv_MR_64(B, inv, mod), inv, mod);
}
bool eq_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 inv, u64 mod) {
return _from_montgomery_64(A, inv, mod) == _from_montgomery_64(B, inv, mod);
}
bool neq_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 inv, u64 mod) {
return _from_montgomery_64(A, inv, mod) != _from_montgomery_64(B, inv, mod);
}
bool is_prime_64(u64 n) {
if (n < 4759123141ull) return is_prime((u32)n);
if (!(n & 1)) return false;
Montgomery64 r2 = _r2_64(n), inv = _inv_64(n);
u64 s = CTZ(n - 1);
u64 d = (n - 1) >> s;
u64 as[] = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 };
Montgomery64 e = _one_64(n), rev = _to_montgomery_64(n - 1, r2, inv, n);
for (FastInt i = 0; i < 7; i++) {
if (_MR_64((u128)as[i], inv, n) == 0) return true;
Montgomery64 A = _to_montgomery_64(as[i], r2, inv, n);
Montgomery64 res = pow_MR_64(A, d, inv, n);
if (res == e) continue;
bool ok = true;
for (u64 r = 0; r < s; r++) {
if (res == rev) {
ok = false;
break;
}
res = mul_MR_64(res, res, inv, n);
}
if (ok) return false;
}
return true;
}
void Main(void) {
FastInt Q = read_int();
while (Q--) {
u64 x = inu();
outu(x); SP(); outu(is_prime_64(x));
NL();
}
}
int main(void) {
Main();
return 0;
}
nonamae