結果

問題 No.754 畳み込みの和
ユーザー vwxyzvwxyz
提出日時 2021-10-08 01:41:27
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,815 ms / 5,000 ms
コード長 2,523 bytes
コンパイル時間 310 ms
コンパイル使用メモリ 82,388 KB
実行使用メモリ 310,040 KB
最終ジャッジ日時 2024-07-23 03:15:13
合計ジャッジ時間 8,049 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,799 ms
310,036 KB
testcase_01 AC 1,815 ms
310,040 KB
testcase_02 AC 1,812 ms
310,040 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
readline=sys.stdin.readline
import math

def FFT(polynomial0,polynomial1,digit=10**5):
    def DFT(polynomial,n,inverse=False):
        if inverse:
            primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
        else:
            primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
        if inverse:
            for bit in range(1,n+1):
                a=1<<bit-1
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit]
        else:
            for bit in range(n,0,-1):
                a=1<<bit-1
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t])

    def FFT_(polynomial0,polynomial1):
        N0=len(polynomial0)
        N1=len(polynomial1)
        N=N0+N1-1
        n=(N-1).bit_length()
        polynomial0=polynomial0+[0]*((1<<n)-N0)
        polynomial1=polynomial1+[0]*((1<<n)-N1)
        DFT(polynomial0,n)
        DFT(polynomial1,n)
        fft=[x*y for x,y in zip(polynomial0,polynomial1)]
        DFT(fft,n,inverse=True)
        fft=[round((fft[i]/(1<<n)).real) for i in range(N)]
        return fft

    N0=len(polynomial0)
    N1=len(polynomial1)
    N=N0+N1-1
    polynomial00,polynomial01=[None]*N0,[None]*N0
    polynomial10,polynomial11=[None]*N1,[None]*N1
    for i in range(N0):
        polynomial00[i],polynomial01[i]=divmod(polynomial0[i],digit)
    for i in range(N1):
        polynomial10[i],polynomial11[i]=divmod(polynomial1[i],digit)
    polynomial=[0]*(N)
    a=digit**2-digit
    for i,x in enumerate(FFT_(polynomial00,polynomial10)):
        polynomial[i]+=x*a
    a=digit-1
    for i,x in enumerate(FFT_(polynomial01,polynomial11)):
        polynomial[i]-=x*a
    for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial00,polynomial01)],[x1+x2 for x1,x2 in zip(polynomial10,polynomial11)])):
        polynomial[i]+=x*digit
    return polynomial

N=int(readline())
A=[int(readline()) for i in range(N+1)]
B=[int(readline()) for i in range(N+1)]
mod=10**9+7
ans=sum(FFT(A,B)[:N+1])%mod
print(ans)
0