結果
| 問題 |
No.754 畳み込みの和
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2021-10-08 01:44:59 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 1,795 bytes |
| コンパイル時間 | 269 ms |
| コンパイル使用メモリ | 82,304 KB |
| 実行使用メモリ | 278,124 KB |
| 最終ジャッジ日時 | 2024-07-23 03:15:25 |
| 合計ジャッジ時間 | 3,494 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 3 |
ソースコード
import sys
readline=sys.stdin.readline
import math
def FFT(polynomial0,polynomial1,digit=10**5):
def DFT(polynomial,n,inverse=False):
if inverse:
primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
else:
primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
if inverse:
for bit in range(1,n+1):
a=1<<bit-1
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit]
else:
for bit in range(n,0,-1):
a=1<<bit-1
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t])
def FFT_(polynomial0,polynomial1):
N0=len(polynomial0)
N1=len(polynomial1)
N=N0+N1-1
n=(N-1).bit_length()
polynomial0=polynomial0+[0]*((1<<n)-N0)
polynomial1=polynomial1+[0]*((1<<n)-N1)
DFT(polynomial0,n)
DFT(polynomial1,n)
fft=[x*y for x,y in zip(polynomial0,polynomial1)]
DFT(fft,n,inverse=True)
fft=[round((fft[i]/(1<<n)).real) for i in range(N)]
return fft
return FFT_(polynomial0,polynomial1)
N=int(readline())
A=[int(readline()) for i in range(N+1)]
B=[int(readline()) for i in range(N+1)]
mod=10**9+7
ans=sum(FFT(A,B)[:N+1])%mod
print(ans)
vwxyz