結果
問題 | No.1704 Many Bus Stops (easy) |
ユーザー |
|
提出日時 | 2021-10-08 22:18:11 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 62 ms / 2,000 ms |
コード長 | 5,190 bytes |
コンパイル時間 | 2,317 ms |
コンパイル使用メモリ | 201,916 KB |
最終ジャッジ日時 | 2025-01-24 22:26:14 |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 41 |
ソースコード
#include <bits/stdc++.h>using ll = long long;using std::cin;using std::cout;using std::endl;std::mt19937 rnd(std::chrono::steady_clock::now().time_since_epoch().count());template <class T>inline bool chmax(T &a, T b){if (a < b){a = b;return 1;}return 0;}template <class T>inline bool chmin(T &a, T b){if (a > b){a = b;return 1;}return 0;}const int inf = (int)1e9 + 7;const long long INF = 1LL << 60;template <int mod>struct ModInt{int x;ModInt() : x(0) {}ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}ModInt &operator+=(const ModInt &p){if ((x += p.x) >= mod)x -= mod;return *this;}ModInt &operator-=(const ModInt &p){if ((x += mod - p.x) >= mod)x -= mod;return *this;}ModInt &operator*=(const ModInt &p){x = (int)(1LL * x * p.x % mod);return *this;}ModInt &operator/=(const ModInt &p){*this *= p.inverse();return *this;}ModInt operator-() const { return ModInt(-x); }ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }bool operator==(const ModInt &p) const { return x == p.x; }bool operator!=(const ModInt &p) const { return x != p.x; }ModInt inverse() const{int a = x, b = mod, u = 1, v = 0, t;while (b > 0){t = a / b;std::swap(a -= t * b, b);std::swap(u -= t * v, v);}return ModInt(u);}ModInt pow(int64_t n) const{ModInt ret(1), mul(x);while (n > 0){if (n & 1)ret *= mul;mul *= mul;n >>= 1;}return ret;}friend std::ostream &operator<<(std::ostream &os, const ModInt &p){return os << p.x;}friend std::istream &operator>>(std::istream &is, ModInt &a){int64_t t;is >> t;a = ModInt<mod>(t);return (is);}static int get_mod() { return mod; }};constexpr int mod = (int)1e9 + 7;using mint = ModInt<mod>;template <class T>struct Matrix{std::vector<std::vector<T>> A;Matrix() {}Matrix(int n, int m) : A(n, std::vector<T>(m, 0)) {}Matrix(int n) : A(n, std::vector<T>(n, 0)){};int height() const{return (A.size());}int width() const{return (A[0].size());}inline const std::vector<T> &operator[](int k) const{return (A.at(k));}inline std::vector<T> &operator[](int k){return (A.at(k));}static Matrix I(int n){Matrix mat(n);for (int i = 0; i < n; i++)mat[i][i] = 1;return (mat);}Matrix &operator+=(const Matrix &B){int n = height(), m = width();assert(n == B.height() && m == B.width());for (int i = 0; i < n; i++)for (int j = 0; j < m; j++)(*this)[i][j] += B[i][j];return (*this);}Matrix &operator-=(const Matrix &B){int n = height(), m = width();assert(n == B.height() && m == B.width());for (int i = 0; i < n; i++)for (int j = 0; j < m; j++)(*this)[i][j] -= B[i][j];return (*this);}Matrix &operator*=(const Matrix &B){int n = height(), m = B.width(), p = width();assert(p == B.height());std::vector<std::vector<T>> C(n, std::vector<T>(m, 0));for (int i = 0; i < n; i++)for (int j = 0; j < m; j++)for (int k = 0; k < p; k++)C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);A.swap(C);return (*this);}Matrix &operator^=(long long k){Matrix B = Matrix::I(height());while (k > 0){if (k & 1)B *= *this;*this *= *this;k >>= 1LL;}A.swap(B.A);return (*this);}Matrix operator+(const Matrix &B) const{return (Matrix(*this) += B);}Matrix operator-(const Matrix &B) const{return (Matrix(*this) -= B);}Matrix operator*(const Matrix &B) const{return (Matrix(*this) *= B);}Matrix operator^(const long long k) const{return (Matrix(*this) ^= k);}friend std::ostream &operator<<(std::ostream &os, Matrix &p){int n = p.height(), m = p.width();for (int i = 0; i < n; i++){os << "[";for (int j = 0; j < m; j++){os << p[i][j] << (j + 1 == m ? "]\n" : ",");}}return (os);}};void solve([[maybe_unused]] int CASE){int C, N, M;cin >> N;C = 3;M = 1;Matrix<mint> mat(4, 4);const mint cinv = mint(1) / mint(C);mat[0][0] = cinv;mat[0][1] = 1;mat[1][3] = cinv;mat[2][0] = cinv * (C - 1);mat[2][3] = cinv * (C - 2);mat[3][2] = 1;mat[3][3] = cinv;mat ^= N;Matrix<mint> ini(4, 1);ini[0][0] = 1;mat *= ini;mint exist = mat[0][0];mint ret = mint(1) - mint(mint(1) - exist).pow(M);cout << ret << "\n";}int main(){std::cin.tie(nullptr);std::ios::sync_with_stdio(false);int kkt = 1;cin >> kkt;for (int jupi = 1; jupi <= kkt; jupi++)solve(jupi);return 0;}