結果
問題 | No.1706 Many Bus Stops (hard) |
ユーザー |
👑 ![]() |
提出日時 | 2021-10-08 22:31:43 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 6,909 bytes |
コンパイル時間 | 2,478 ms |
コンパイル使用メモリ | 203,388 KB |
最終ジャッジ日時 | 2025-01-24 22:42:13 |
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 41 |
ソースコード
#define _USE_MATH_DEFINES#include <bits/stdc++.h>using namespace std;#define FOR(i,m,n) for(int i=(m);i<(n);++i)#define REP(i,n) FOR(i,0,n)#define ALL(v) (v).begin(),(v).end()using ll = long long;constexpr int INF = 0x3f3f3f3f;constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;constexpr double EPS = 1e-8;constexpr int MOD = 1000000007;// constexpr int MOD = 998244353;constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1};constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1};template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }struct IOSetup {IOSetup() {std::cin.tie(nullptr);std::ios_base::sync_with_stdio(false);std::cout << fixed << setprecision(20);}} iosetup;template <int M>struct MInt {unsigned int val;MInt(): val(0) {}MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}static constexpr int get_mod() { return M; }static void set_mod(int divisor) { assert(divisor == M); }static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }static MInt inv(int x, bool init = false) {// assert(0 <= x && x < M && std::__gcd(x, M) == 1);static std::vector<MInt> inverse{0, 1};int prev = inverse.size();if (init && x >= prev) {// "x!" and "M" must be disjoint.inverse.resize(x + 1);for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);}if (x < inverse.size()) return inverse[x];unsigned int a = x, b = M; int u = 1, v = 0;while (b) {unsigned int q = a / b;std::swap(a -= q * b, b);std::swap(u -= q * v, v);}return u;}static MInt fact(int x) {static std::vector<MInt> f{1};int prev = f.size();if (x >= prev) {f.resize(x + 1);for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;}return f[x];}static MInt fact_inv(int x) {static std::vector<MInt> finv{1};int prev = finv.size();if (x >= prev) {finv.resize(x + 1);finv[x] = inv(fact(x).val);for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;}return finv[x];}static MInt nCk(int n, int k) {if (n < 0 || n < k || k < 0) return 0;if (n - k > k) k = n - k;return fact(n) * fact_inv(k) * fact_inv(n - k);}static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }static MInt large_nCk(long long n, int k) {if (n < 0 || n < k || k < 0) return 0;inv(k, true);MInt res = 1;for (int i = 1; i <= k; ++i) res *= inv(i) * n--;return res;}MInt pow(long long exponent) const {MInt tmp = *this, res = 1;while (exponent > 0) {if (exponent & 1) res *= tmp;tmp *= tmp;exponent >>= 1;}return res;}MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }bool operator==(const MInt &x) const { return val == x.val; }bool operator!=(const MInt &x) const { return val != x.val; }bool operator<(const MInt &x) const { return val < x.val; }bool operator<=(const MInt &x) const { return val <= x.val; }bool operator>(const MInt &x) const { return val > x.val; }bool operator>=(const MInt &x) const { return val >= x.val; }MInt &operator++() { if (++val == M) val = 0; return *this; }MInt operator++(int) { MInt res = *this; ++*this; return res; }MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }MInt operator--(int) { MInt res = *this; --*this; return res; }MInt operator+() const { return *this; }MInt operator-() const { return MInt(val ? M - val : 0); }MInt operator+(const MInt &x) const { return MInt(*this) += x; }MInt operator-(const MInt &x) const { return MInt(*this) -= x; }MInt operator*(const MInt &x) const { return MInt(*this) *= x; }MInt operator/(const MInt &x) const { return MInt(*this) /= x; }friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }};namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }using ModInt = MInt<MOD>;template <typename T>struct Matrix {Matrix(int m, int n, T val = 0) : dat(m, std::vector<T>(n, val)) {}int height() const { return dat.size(); }int width() const { return dat.front().size(); }Matrix pow(long long exponent) const {int n = height();Matrix<T> tmp = *this, res(n, n, 0);for (int i = 0; i < n; ++i) res[i][i] = 1;while (exponent > 0) {if (exponent & 1) res *= tmp;tmp *= tmp;exponent >>= 1;}return res;}inline const std::vector<T> &operator[](const int idx) const { return dat[idx]; }inline std::vector<T> &operator[](const int idx) { return dat[idx]; }Matrix &operator=(const Matrix &x) {int m = x.height(), n = x.width();dat.resize(m, std::vector<T>(n));for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) dat[i][j] = x[i][j];return *this;}Matrix &operator+=(const Matrix &x) {int m = height(), n = width();for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) dat[i][j] += x[i][j];return *this;}Matrix &operator-=(const Matrix &x) {int m = height(), n = width();for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) dat[i][j] -= x[i][j];return *this;}Matrix &operator*=(const Matrix &x) {int m = height(), n = x.width(), l = width();std::vector<std::vector<T>> res(m, std::vector<T>(n, 0));for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) {for (int k = 0; k < l; ++k) res[i][j] += dat[i][k] * x[k][j];}std::swap(dat, res);return *this;}Matrix operator+(const Matrix &x) const { return Matrix(*this) += x; }Matrix operator-(const Matrix &x) const { return Matrix(*this) -= x; }Matrix operator*(const Matrix &x) const { return Matrix(*this) *= x; }private:std::vector<std::vector<T>> dat;};int main() {int c, n, m; cin >> c >> n >> m;Matrix<ModInt> matrix(4, 4);matrix[0][0] = ModInt::inv(c); matrix[0][1] = 1;matrix[1][2] = ModInt::inv(c);matrix[2][2] = ModInt::inv(c); matrix[2][3] = 1;matrix[3][0] = ModInt(c - 1) / c; matrix[3][2] = ModInt(c - 2) / c;cout << -(-matrix.pow(n)[0][0] + 1).pow(m) + 1 << '\n';return 0;}