結果

問題 No.1704 Many Bus Stops (easy)
ユーザー stoq
提出日時 2021-10-08 22:38:17
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 49 ms / 2,000 ms
コード長 11,633 bytes
コンパイル時間 7,178 ms
コンパイル使用メモリ 276,572 KB
最終ジャッジ日時 2025-01-24 22:53:19
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 41
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define MOD_TYPE 1
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#include <atcoder/all>
using namespace atcoder;
#if 0
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/cpp_int.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
#if MOD_TYPE == 1
constexpr ll MOD = ll(1e9 + 7);
#else
#if MOD_TYPE == 2
constexpr ll MOD = 998244353;
#else
constexpr ll MOD = 1000003;
#endif
#endif
using mint = static_modint<MOD>;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-11;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
#define UNIQUE(v) v.erase(unique(all(v)), v.end())
struct io_init {
io_init() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; }
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val) {
fill((T *)array, (T *)(array + N), val);
}
template <typename T>
vector<T> compress(vector<T> &v) {
vector<T> val = v;
sort(all(val)), val.erase(unique(all(val)), val.end());
for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin();
return val;
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept {
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept {
os << p.first << " " << p.second;
return os;
}
ostream &operator<<(ostream &os, mint m) {
os << m.val();
return os;
}
random_device seed_gen;
mt19937_64 engine(seed_gen());
struct BiCoef {
vector<mint> fact_, inv_, finv_;
BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
for (int i = 2; i < n; i++) {
fact_[i] = fact_[i - 1] * i;
inv_[i] = -inv_[MOD % i] * (MOD / i);
finv_[i] = finv_[i - 1] * inv_[i];
}
}
mint C(ll n, ll k) const noexcept {
if (n < k || n < 0 || k < 0) return 0;
return fact_[n] * finv_[k] * finv_[n - k];
}
mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; }
mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); }
mint Ch1(ll n, ll k) const noexcept {
if (n < 0 || k < 0) return 0;
mint res = 0;
for (int i = 0; i < n; i++)
res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1);
return res;
}
mint fact(ll n) const noexcept {
if (n < 0) return 0;
return fact_[n];
}
mint inv(ll n) const noexcept {
if (n < 0) return 0;
return inv_[n];
}
mint finv(ll n) const noexcept {
if (n < 0) return 0;
return finv_[n];
}
};
BiCoef bc(500010);
#pragma endregion
#pragma region FPS
//
// https://opt-cp.com/fps-implementation/
#define fastprod 0
#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)
#define drep(i, n) drep2(i, n, 0)
template <class T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using vector<T>::operator=;
using F = FormalPowerSeries;
F operator-() const {
F res(*this);
for (auto &e : res) e = -e;
return res;
}
F &operator*=(const T &g) {
for (auto &e : *this) e *= g;
return *this;
}
F &operator/=(const T &g) {
assert(g != T(0));
*this *= g.inv();
return *this;
}
F &operator+=(const F &g) {
int n = (*this).size(), m = g.size();
repi(i, min(n, m))(*this)[i] += g[i];
return *this;
}
F &operator-=(const F &g) {
int n = (*this).size(), m = g.size();
repi(i, min(n, m))(*this)[i] -= g[i];
return *this;
}
F &operator<<=(const int d) {
int n = (*this).size();
(*this).insert((*this).begin(), d, 0);
(*this).resize(n);
return *this;
}
F &operator>>=(const int d) {
int n = (*this).size();
(*this).erase((*this).begin(), (*this).begin() + min(n, d));
(*this).resize(n);
return *this;
}
F inv(int d = -1) const {
int n = (*this).size();
assert(n != 0 && (*this)[0] != 0);
if (d == -1) d = n;
assert(d > 0);
F res{(*this)[0].inv()};
while (res.size() < d) {
int m = size(res);
F f(begin(*this), begin(*this) + min(n, 2 * m));
F r(res);
f.resize(2 * m), internal::butterfly(f);
r.resize(2 * m), internal::butterfly(r);
repi(i, 2 * m) f[i] *= r[i];
internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2 * m), internal::butterfly(f);
repi(i, 2 * m) f[i] *= r[i];
internal::butterfly_inv(f);
T iz = T(2 * m).inv();
iz *= -iz;
repi(i, m) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
return {res.begin(), res.begin() + d};
}
// fast: FMT-friendly modulus only
#if fastprod
F &operator*=(const F &g) {
int n = (*this).size();
*this = convolution(*this, g);
(*this).resize(n);
return *this;
}
F &operator/=(const F &g) {
int n = (*this).size();
*this = convolution(*this, g.inv(n));
(*this).resize(n);
return *this;
}
#else
F &operator*=(const F &g) {
int n = (*this).size(), m = g.size();
drep(i, n) {
(*this)[i] *= g[0];
REPI(j, 1, min(i + 1, m))(*this)[i] += (*this)[i - j] * g[j];
}
return *this;
}
F &operator/=(const F &g) {
assert(g[0] != T(0));
T ig0 = g[0].inv();
int n = (*this).size(), m = g.size();
repi(i, n) {
REPI(j, 1, min(i + 1, m))(*this)[i] -= (*this)[i - j] * g[j];
(*this)[i] *= ig0;
}
return *this;
}
#endif
// sparse
F &operator*=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
if (d == 0)
g.erase(g.begin());
else
c = 0;
drep(i, n) {
(*this)[i] *= c;
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i - j] * b;
}
}
return *this;
}
F &operator/=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
repi(i, n) {
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i - j] * b;
}
(*this)[i] *= ic;
}
return *this;
}
// multiply and divide (1 + cz^d)
void multiply(const int d, const T c) {
int n = (*this).size();
if (c == T(1))
drep(i, n - d)(*this)[i + d] += (*this)[i];
else if (c == T(-1))
drep(i, n - d)(*this)[i + d] -= (*this)[i];
else
drep(i, n - d)(*this)[i + d] += (*this)[i] * c;
}
void divide(const int d, const T c) {
int n = (*this).size();
if (c == T(1))
repi(i, n - d)(*this)[i + d] -= (*this)[i];
else if (c == T(-1))
repi(i, n - d)(*this)[i + d] += (*this)[i];
else
repi(i, n - d)(*this)[i + d] -= (*this)[i] * c;
}
T eval(const T &a) const {
T x(1), res(0);
for (auto e : *this) res += e * x, x *= a;
return res;
}
void differentiate() {
int n = (*this).size();
(*this) >>= 1;
REPI(i, 1, n - 1)(*this)[i] *= (i + 1);
}
void integrate(bool ext = true) {
if (ext) (*this).push_back(0);
int n = (*this).size();
(*this) <<= 1;
REPI(i, 1, n)(*this)[i] *= bc.inv(i);
}
F operator*(const T &g) const { return F(*this) *= g; }
F operator/(const T &g) const { return F(*this) /= g; }
F operator+(const F &g) const { return F(*this) += g; }
F operator-(const F &g) const { return F(*this) -= g; }
F operator<<(const int d) const { return F(*this) <<= d; }
F operator>>(const int d) const { return F(*this) >>= d; }
F operator*(const F &g) const { return F(*this) *= g; }
F operator/(const F &g) const { return F(*this) /= g; }
F operator*(vector<pair<int, T>> g) const { return F(*this) *= g; }
F operator/(vector<pair<int, T>> g) const { return F(*this) /= g; }
};
using fps = FormalPowerSeries<mint>;
using sfps = vector<pair<int, mint>>;
void add_ext(fps &f, fps &g) {
f.resize(max(f.size(), g.size()));
f += g;
}
void prod_ext(fps &f, fps &g) {
f.resize(f.size() + g.size() - 1, 0);
f *= g;
}
void prod_ext(fps &f, sfps &g) {
int m = 0;
for (auto [d, c] : g) {
if (m < d) m = d;
}
f.resize(f.size() + m);
f *= g;
}
#pragma endregion
fps Berlekamp_Massey(const fps &a) {
int n = a.size();
fps c{-1}, c2{0};
mint r2 = 1;
int i2 = -1;
for (int i = 0; i < n; i++) {
mint r = 0;
int d = c.size();
for (int j = 0; j < d; j++) r += c[j] * a[i - j];
if (r == 0) continue;
mint coef = -r / r2;
int d2 = c2.size();
if (d - i >= d2 - i2) {
for (int j = 0; j < d2; j++) c[j + i - i2] += c2[j] * coef;
} else {
fps tmp(c);
c.resize(d2 + i - i2);
for (int j = 0; j < d2; j++) c[j + i - i2] += c2[j] * coef;
c2 = std::move(tmp);
i2 = i, r2 = r;
}
}
return {c.begin() + 1, c.end()};
}
// return generating function of a, s.t. F(x) = P(x) / Q(x)
std::pair<fps, fps> find_generating_function(fps a) {
auto q = Berlekamp_Massey(a);
int d = q.size();
a.resize(d);
q.insert(q.begin(), 1);
for (int i = 1; i < (int)q.size(); i++) q[i] *= -1;
a *= q;
return {a, q};
}
// return [x^k] p(x) / q(x)
mint compute_Kthterm(fps p, fps q, ll k) {
int d = q.size();
assert(q[0] == 1 and p.size() + 1 <= d);
while (k) {
auto q_minus = q;
for (int i = 1; i < d; i += 2) q_minus[i] *= -1;
p.resize(2 * d);
q.resize(2 * d);
p *= q_minus;
q *= q_minus;
for (int i = 0; i < d - 1; i++) p[i] = p[(i << 1) | (k & 1)];
for (int i = 0; i < d; i++) q[i] = q[i << 1];
p.resize(d - 1);
q.resize(d);
k >>= 1;
}
return p[0];
}
mint compute_Kthterm(std::pair<fps, fps> f, ll k) {
return compute_Kthterm(f.first, f.second, k);
}
void solve() {
const int m = 10;
fps a(m, 0), b(m, 0);
a[0] = 1, b[0] = 0;
REP(i, 1, m) {
a[i] += a[i - 1];
if (i >= 2) a[i] += b[i - 2];
a[i] *= bc.inv(3);
if (i >= 2) b[i] += a[i - 2] * 2 + b[i - 2];
b[i] += b[i - 1];
b[i] *= bc.inv(3);
}
auto g = find_generating_function(a);
int t;
cin >> t;
rep(ti, t) {
int n;
cin >> n;
cout << compute_Kthterm(g, n) << "\n";
}
}
int main() { solve(); }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0